本文整理汇总了Python中skimage.feature.canny方法的典型用法代码示例。如果您正苦于以下问题:Python feature.canny方法的具体用法?Python feature.canny怎么用?Python feature.canny使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.feature
的用法示例。
在下文中一共展示了feature.canny方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _extract_lines
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def _extract_lines(img, edges=None, mask=None, min_line_length=20, max_line_gap=3):
global __i__
__i__ += 1
if edges is None:
edges = canny(rgb2grey(img))
if mask is not None:
edges = edges & mask
# figure()
# subplot(131)
# imshow(img)
# subplot(132)
#vimshow(edges)
# subplot(133)
# if mask is not None:
# imshow(mask, cmap=cm.gray)
# savefig('/home/shared/Projects/Facades/src/data/for-labelme/debug/foo/{:06}.jpg'.format(__i__))
lines = np.array(probabilistic_hough_line(edges, line_length=min_line_length, line_gap=max_line_gap))
return lines
示例2: image2edge
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def image2edge(img, mode = None):
'''_image2edge(img)
convert image to edge map
img: 2D_numpy_array
Return 2D_numpy_array '''
if mode == 'canny':
img = image_norm(img)
edgeim = numpy.uint8(canny(img))*255
return edgeim
if mode == 'sobel':
img = image_norm(img)
edgeim = sobel(img)*255
return edgeim
img = numpy.float32(img)
im1 = scipy.ndimage.filters.sobel(img,axis=0,mode='constant',cval =0.0)
im2 = scipy.ndimage.filters.sobel(img,axis=1,mode='constant',cval =0.0)
return (abs(im1) + abs(im2))/2
示例3: build_edge_dataset
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def build_edge_dataset(in_dir, out_dir, sigma=3):
"""Generate a dataset of (canny) edge-detected images.
@param in_dir: string
input directory of images.
@param out_dir: string
output directory of images.
@param sigma: float (default: 3)
smoothness for edge detection.
"""
image_paths = os.listdir(in_dir)
n_images = len(image_paths)
for i, image_path in enumerate(image_paths):
print('Building edge-detected dataset: [%d/%d] images.' % (i + 1, n_images))
image_full_path = os.path.join(in_dir, image_path)
image = Image.open(image_full_path).convert('L')
image_npy = np.asarray(image).astype(np.float) / 255.
image_npy = feature.canny(image_npy, sigma=sigma)
image_npy = image_npy.astype(np.uint8) * 255
image = Image.fromarray(image_npy)
image.save(os.path.join(out_dir, image_path))
示例4: _phantom_center_calc
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def _phantom_center_calc(self) -> Point:
"""Determine the phantom center.
This is done by searching for circular ROIs of the canny image. Those that are circular and roughly the
same size as the biggest circle ROI are all sampled for the center of the bounding box. The values are
averaged over all the detected circles to give a more robust value.
Returns
-------
center : Point
"""
if self._phantom_center is not None:
return self._phantom_center
circles = [roi for roi in self._blobs if
np.isclose(self._regions[roi].major_axis_length, self.phantom_radius * 3.35, rtol=0.3)]
# get average center of all circles
circle_rois = [self._regions[roi] for roi in circles]
y = np.mean([bbox_center(roi).y for roi in circle_rois])
x = np.mean([bbox_center(roi).x for roi in circle_rois])
return Point(x, y)
示例5: _phantom_angle_calc
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def _phantom_angle_calc(self) -> float:
"""Determine the angle of the phantom.
This is done by searching for square-like boxes of the canny image. There are usually two: one lead and
one copper. The box with the highest intensity (lead) is identified. The angle from the center of the lead
square bounding box and the phantom center determines the phantom angle.
Returns
-------
angle : float
The angle in radians.
"""
circle = CollapsedCircleProfile(self.phantom_center, self.phantom_radius * 0.79, self.image,
width_ratio=0.04, ccw=True)
circle.ground()
circle.filter(size=0.01)
peak_idx = circle.find_fwxm_peaks(threshold=0.6, max_number=1)[0]
shift_percent = peak_idx / len(circle.values)
shift_radians = shift_percent * 2 * np.pi
shift_radians_corrected = 2*np.pi - shift_radians
return np.degrees(shift_radians_corrected)
示例6: _phantom_radius_calc
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def _phantom_radius_calc(self) -> float:
"""Determine the radius of the phantom.
The radius is determined by finding the largest of the detected blobs of the canny image and taking
its major axis length.
Returns
-------
radius : float
The radius of the phantom in pixels. The actual value is not important; it is used for scaling the
distances to the low and high contrast ROIs.
"""
big_circle_idx = np.argsort([self._regions[roi].major_axis_length for roi in self._blobs])[-1]
circle_roi = self._regions[self._blobs[big_circle_idx]]
radius = circle_roi.major_axis_length / 3.35
return radius
示例7: compute
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def compute(image):
# type: (numpy.ndarray) -> float
"""Compute the sharpness metric for the given data."""
# convert the image to double for further processing
image = image.astype(np.float64)
# edge detection using canny and sobel canny edge detection is done to
# classify the blocks as edge or non-edge blocks and sobel edge
# detection is done for the purpose of edge width measurement.
from skimage.feature import canny
canny_edges = canny(image)
sobel_edges = sobel(image)
# edge width calculation
marziliano_widths = marziliano_method(sobel_edges, image)
# sharpness metric calculation
return _calculate_sharpness_metric(image, canny_edges, marziliano_widths)
示例8: filter
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def filter(self, filt, **kwargs):
"""Filter the image
Parameters
----------
filt : str
Image filter. Additional parameters can be passed as keyword
arguments. The following filters are supported:
* 'sobel': Edge filter the image using the `Sobel filter
<https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel>`_.
* 'scharr': Edge filter the image using the `Scarr filter
<https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.scharr>`_.
* 'canny': Edge filter the image using the `Canny algorithm
<https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny>`_.
You can also specify ``sigma``, ``low_threshold``,
``high_threshold``, ``mask``, and ``use_quantiles``.
* 'median': Return local median of the image.
**kwargs :
Additional parameters passed to the filter
Returns
-------
stim : `ImageStimulus`
A copy of the stimulus object with the filtered image
"""
if not isinstance(filt, str):
raise TypeError("'filt' must be a string, not %s." % type(filt))
img = self.data.reshape(self.img_shape)
if filt.lower() == 'sobel':
img = sobel(img, **kwargs)
elif filt.lower() == 'scharr':
img = scharr(img, **kwargs)
elif filt.lower() == 'canny':
img = canny(img, **kwargs)
elif filt.lower() == 'median':
img = median(img, **kwargs)
else:
raise ValueError("Unknown filter '%s'." % filt)
return ImageStimulus(img, electrodes=self.electrodes,
metadata=self.metadata)
示例9: get_edges
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def get_edges(self, detector='sobel'):
if detector == 'sobel':
img = filters.sobel(self.img_gray)
elif detector == 'canny1':
img = feature.canny(self.img_gray, sigma=1)
elif detector == 'canny3':
img = feature.canny(self.img_gray, sigma=3)
elif detector == 'scharr':
img = filters.scharr(self.img_gray)
elif detector == 'prewitt':
img = filters.prewitt(self.img_gray)
elif detector == 'roberts':
img = filters.roberts(self.img_gray)
return img
示例10: plot
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def plot(data, xi=None, cmap='RdBu_r', axis=plt, percentile=100, dilation=3.0, alpha=0.8):
dx, dy = 0.05, 0.05
xx = np.arange(0.0, data.shape[1], dx)
yy = np.arange(0.0, data.shape[0], dy)
xmin, xmax, ymin, ymax = np.amin(xx), np.amax(xx), np.amin(yy), np.amax(yy)
extent = xmin, xmax, ymin, ymax
cmap_xi = plt.get_cmap('Greys_r')
cmap_xi.set_bad(alpha=0)
overlay = None
if xi is not None:
# Compute edges (to overlay to heatmaps later)
xi_greyscale = xi if len(xi.shape) == 2 else np.mean(xi, axis=-1)
in_image_upscaled = transform.rescale(xi_greyscale, dilation, mode='constant')
edges = feature.canny(in_image_upscaled).astype(float)
edges[edges < 0.5] = np.nan
edges[:5, :] = np.nan
edges[-5:, :] = np.nan
edges[:, :5] = np.nan
edges[:, -5:] = np.nan
overlay = edges
abs_max = np.percentile(np.abs(data), percentile)
abs_min = abs_max
if len(data.shape) == 3:
data = np.mean(data, 2)
axis.imshow(data, extent=extent, interpolation='none', cmap=cmap, vmin=-abs_min, vmax=abs_max)
if overlay is not None:
axis.imshow(overlay, extent=extent, interpolation='none', cmap=cmap_xi, alpha=alpha)
axis.axis('off')
return axis
示例11: canny_edge
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def canny_edge(img, sigma=1):
"""
args:
img : 2D or 3D array
return:
edge: outline of image
"""
if len(img.shape) == 3:
img = rgb2gray(img)
edge_bool = feature.canny(img, sigma)
edge_img = np.zeros((edge_bool.shape), np.uint8)
edge_img[edge_bool] = 255
return edge_img
示例12: _get_canny_regions
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def _get_canny_regions(self, sigma=2, percentiles=(0.001, 0.01)):
"""Compute the canny edges of the image and return the connected regions found."""
# copy, filter, and ground the image
img_copy = copy.copy(self.image)
img_copy.filter(kind='gaussian', size=sigma)
img_copy.ground()
# compute the canny edges with very low thresholds (detects nearly everything)
lo_th, hi_th = np.percentile(img_copy, percentiles)
c = feature.canny(img_copy, low_threshold=lo_th, high_threshold=hi_th)
# label the canny edge regions
labeled = measure.label(c)
regions = measure.regionprops(labeled, intensity_image=img_copy)
return regions
示例13: _regions
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def _regions(self):
"""All the regions of the canny image that were labeled."""
return self._get_canny_regions()
示例14: filter
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def filter(self, array, *args, **kwargs):
array[np.isnan(array)] = 0.0
array = feature.canny(array, sigma=self.sigma)
return array
示例15: canny
# 需要导入模块: from skimage import feature [as 别名]
# 或者: from skimage.feature import canny [as 别名]
def canny(*args, **kwargs):
return Canny(*args, **kwargs).run(**kwargs)