本文整理匯總了Python中skimage.feature.blob_dog方法的典型用法代碼示例。如果您正苦於以下問題:Python feature.blob_dog方法的具體用法?Python feature.blob_dog怎麽用?Python feature.blob_dog使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skimage.feature
的用法示例。
在下文中一共展示了feature.blob_dog方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from skimage import feature [as 別名]
# 或者: from skimage.feature import blob_dog [as 別名]
def __init__(
self,
min_sigma: Union[Number, Tuple[Number, ...]],
max_sigma: Union[Number, Tuple[Number, ...]],
num_sigma: int,
threshold: Number,
overlap: float = 0.5,
measurement_type='max',
is_volume: bool = True,
detector_method: str = 'blob_log',
exclude_border: Optional[int] = None,
) -> None:
self.min_sigma = min_sigma
self.max_sigma = max_sigma
self.num_sigma = num_sigma
self.threshold = threshold
self.overlap = overlap
self.is_volume = is_volume
self.measurement_function = self._get_measurement_function(measurement_type)
self.exclude_border = exclude_border
try:
self.detector_method = blob_detectors[detector_method]
except ValueError:
raise ValueError("Detector method must be one of {blob_log, blob_dog, blob_doh}")
示例2: test_dog_feature
# 需要導入模塊: from skimage import feature [as 別名]
# 或者: from skimage.feature import blob_dog [as 別名]
def test_dog_feature(self):
blob = self.patch.data['blob_dog']
delta = 1e-4
test_min = np.min(blob)
exp_min = 0.0
self.assertAlmostEqual(test_min, exp_min, delta=delta, msg="Expected min {}, got {}".format(exp_min, test_min))
test_max = np.max(blob)
exp_max = 37.9625
self.assertAlmostEqual(test_max, exp_max, delta=delta, msg="Expected max {}, got {}".format(exp_max, test_max))
test_mean = np.mean(blob)
exp_mean = 0.0545
self.assertAlmostEqual(test_mean, exp_mean, delta=delta,
msg="Expected mean {}, got {}".format(exp_mean, test_mean))
test_median = np.median(blob)
exp_median = 0.0
self.assertAlmostEqual(test_median, exp_median, delta=delta,
msg="Expected median {}, got {}".format(exp_median, test_median))
示例3: _peak_find_dog_chunk
# 需要導入模塊: from skimage import feature [as 別名]
# 或者: from skimage.feature import blob_dog [as 別名]
def _peak_find_dog_chunk(data, **kwargs):
"""Find peaks in a chunk using skimage's blob_dog function.
Parameters
----------
data : NumPy array
min_sigma : float, optional
max_sigma : float, optional
sigma_ratio : float, optional
threshold : float, optional
overlap : float, optional
normalize_value : float, optional
All the values in data will be divided by this value.
If no value is specified, the max value in each individual image will
be used.
Returns
-------
peak_array : NumPy 2D object array
Same size as the two last dimensions in data.
The peak positions themselves are stored in 2D NumPy arrays
inside each position in peak_array. This is done instead of
making a 4D NumPy array, since the number of found peaks can
vary in each position.
Example
-------
>>> s = pxm.dummy_data.dummy_data.get_cbed_signal()
>>> import pyxem.utils.dask_tools as dt
>>> peak_array = dt._peak_find_dog_chunk(s.data)
>>> peaks00 = peak_array[0, 0]
>>> peaks23 = peak_array[2, 3]
"""
output_array = np.empty(data.shape[:-2], dtype="object")
for index in np.ndindex(data.shape[:-2]):
islice = np.s_[index]
output_array[islice] = _peak_find_dog_single_frame(image=data[islice], **kwargs)
return output_array
示例4: setUpClass
# 需要導入模塊: from skimage import feature [as 別名]
# 或者: from skimage.feature import blob_dog [as 別名]
def setUpClass(cls):
cls.patch = EOPatch.load(cls.TEST_PATCH_FILENAME)
cls._prepare_patch(cls.patch)
BlobTask((FeatureType.DATA, 'ndvi', 'blob'), blob_dog, sigma_ratio=1.6, min_sigma=1, max_sigma=30,
overlap=0.5, threshold=0).execute(cls.patch)
DoGBlobTask((FeatureType.DATA, 'ndvi', 'blob_dog'), threshold=0).execute(cls.patch)
LoGBlobTask((FeatureType.DATA, 'ndvi', 'blob_log'), log_scale=True, threshold=0).execute(cls.patch)
DoHBlobTask((FeatureType.DATA, 'ndvi', 'blob_doh'), num_sigma=5, threshold=0).execute(cls.patch)
cls.initial_patch = EOPatch.load(cls.TEST_PATCH_FILENAME)
cls._prepare_patch(cls.initial_patch)
示例5: test_blob_feature
# 需要導入模塊: from skimage import feature [as 別名]
# 或者: from skimage.feature import blob_dog [as 別名]
def test_blob_feature(self):
self.assertTrue(np.allclose(self.patch.data['blob'], self.patch.data['blob_dog']),
msg='DoG derived class result not equal to base class result')
示例6: blob_image_multiscale2
# 需要導入模塊: from skimage import feature [as 別名]
# 或者: from skimage.feature import blob_dog [as 別名]
def blob_image_multiscale2(image, type=0,scale=2):
# function that return a list of blob_coordinates, 0 = dog, 1 = doh, 2 = log
list = []
image = norm.normalize(image)
for z, slice in tqdm(enumerate(image)):
# init list of different sigma/zoom blobs
featureblobs = []
# x = 0,1,2,3,4
if scale == 2:
# for x in xrange(0,6):
# if type == 0:
# featureblobs.append(feature.blob_dog(slice, 2**x, 2**x))
# if type == 1:
# featureblobs.append(feature.blob_doh(slice, 2**x, 2**x))
# if type == 2:
# featureblobs.append(feature.blob_log(slice, 2**x, 2**x))
for x in xrange(0,5):
if type == 0:
featureblobs.append(feature.blob_dog(slice, 2**x, 2**(x+1)))
if type == 1:
featureblobs.append(feature.blob_doh(slice, 2**x, 2**(x+1)))
if type == 2:
featureblobs.append(feature.blob_log(slice, 2**x, 2**(x+1),16,.1))
else:
for x in xrange(0,4):
if type == 0:
featureblobs.append(feature.blob_dog(slice, 3**x, 3**x))
if type == 1:
featureblobs.append(feature.blob_doh(slice, 3**x, 3**x))
if type == 2:
featureblobs.append(feature.blob_log(slice, 3**x, 3**x))
# init list of blob coords
blob_coords = []
#print featureblobs
# start at biggest blob size
for featureblob in reversed(featureblobs):
# for every blob found of a blobsize
for blob in enumerate(featureblob):
# if that blob is not within range of another blob, add it
blob = blob[1]
if not within_range(blob, blob_coords):
blob_coords.append([z, blob[0], blob[1], blob[2]])
list.append(blob_coords)
return list
示例7: find_peaks_dog
# 需要導入模塊: from skimage import feature [as 別名]
# 或者: from skimage.feature import blob_dog [as 別名]
def find_peaks_dog(
z,
min_sigma=1.0,
max_sigma=50.0,
sigma_ratio=1.6,
threshold=0.2,
overlap=0.5,
exclude_border=False,
):
"""
Finds peaks via the difference of Gaussian Matrices method from
`scikit-image`.
Parameters
----------
z : numpy.ndarray
2-d array of intensities
float min_sigma, max_sigma, sigma_ratio, threshold, overlap
Additional parameters to be passed to the algorithm. See `blob_dog`
documentation for details:
http://scikit-image.org/docs/dev/api/skimage.feature.html#blob-dog
Returns
-------
peaks : numpy.ndarray
Array of peak pixel coordinates with shape (n_peaks, 2).
Notes
-----
While highly effective at finding even very faint peaks, this method is
sensitive to fluctuations in intensity near the edges of the image.
"""
z = z / np.max(z)
blobs = blob_dog(
z,
min_sigma=min_sigma,
max_sigma=max_sigma,
sigma_ratio=sigma_ratio,
threshold=threshold,
overlap=overlap,
)
centers = blobs[:, :2]
return centers
示例8: _peak_find_dog_single_frame
# 需要導入模塊: from skimage import feature [as 別名]
# 或者: from skimage.feature import blob_dog [as 別名]
def _peak_find_dog_single_frame(
image,
min_sigma=0.98,
max_sigma=55,
sigma_ratio=1.76,
threshold=0.36,
overlap=0.81,
normalize_value=None,
):
"""Find peaks in a single frame using skimage's blob_dog function.
Parameters
----------
image : NumPy 2D array
min_sigma : float, optional
max_sigma : float, optional
sigma_ratio : float, optional
threshold : float, optional
overlap : float, optional
normalize_value : float, optional
All the values in image will be divided by this value.
If no value is specified, the max value in the image will be used.
Returns
-------
peaks : NumPy 2D array
In the form [[x0, y0], [x1, y1], [x2, y2], ...]
Example
-------
>>> s = pxm.dummy_data.dummy_data.get_cbed_signal()
>>> import pyxem.utils.dask_tools as dt
>>> peaks = _peak_find_dog_single_frame(s.data[0, 0])
"""
if normalize_value is None:
normalize_value = np.max(image)
peaks = blob_dog(
image / normalize_value,
min_sigma=min_sigma,
max_sigma=max_sigma,
sigma_ratio=sigma_ratio,
threshold=threshold,
overlap=overlap,
exclude_border=False,
)
peak = peaks[:, :2].astype(np.float64)
return peak
示例9: _peak_find_dog
# 需要導入模塊: from skimage import feature [as 別名]
# 或者: from skimage.feature import blob_dog [as 別名]
def _peak_find_dog(dask_array, **kwargs):
"""Find peaks in a dask array using skimage's blob_dog function.
Parameters
----------
dask_array : Dask array
Must be at least 2 dimensions.
min_sigma : float, optional
max_sigma : float, optional
sigma_ratio : float, optional
threshold : float, optional
overlap : float, optional
normalize_value : float, optional
All the values in dask_array will be divided by this value.
If no value is specified, the max value in each individual image will
be used.
Returns
-------
peak_array : dask object array
Same size as the two last dimensions in data.
The peak positions themselves are stored in 2D NumPy arrays
inside each position in peak_array. This is done instead of
making a 4D NumPy array, since the number of found peaks can
vary in each position.
Example
-------
>>> s = pxm.dummy_data.dummy_data.get_cbed_signal()
>>> import dask.array as da
>>> dask_array = da.from_array(s.data, chunks=(5, 5, 25, 25))
>>> import pyxem.utils.dask_tools as dt
>>> peak_array = _peak_find_dog(dask_array)
>>> peak_array_computed = peak_array.compute()
"""
dask_array_rechunked = _rechunk_signal2d_dim_one_chunk(dask_array)
drop_axis = (dask_array_rechunked.ndim - 2, dask_array_rechunked.ndim - 1)
output_array = da.map_blocks(
_peak_find_dog_chunk,
dask_array_rechunked,
drop_axis=drop_axis,
dtype=np.object,
**kwargs
)
return output_array
示例10: blob_detection
# 需要導入模塊: from skimage import feature [as 別名]
# 或者: from skimage.feature import blob_dog [as 別名]
def blob_detection(
input_image,
method="log",
threshold=0.5,
min_sigma=3,
max_sigma=20,
overlap=0.5,
return_sigmas=False,
**kwargs,
):
"""
Interface to the `feature.blob_*`_ methods implemented in scikit-image. A
blob is defined as local a maximum of a Gaussian-filtered image.
.. _`feature.blob_*`:\
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_blob.html
Parameters
----------
input_image : array_like
Array of shape (m, n) containing the input image. Nan values are ignored.
method : {'log', 'dog', 'doh'}, optional
The method to use: 'log' = Laplacian of Gaussian, 'dog' = Difference of
Gaussian, ''
threshold : float, optional
Detection threshold.
min_sigma : float, optional
The minimum standard deviation for the Gaussian kernel.
max_sigma : float, optional
The maximum standard deviation for the Gaussian kernel.
overlap : float, optional
A value between 0 and 1. If the area of two blobs overlaps by a fraction
greater than threshold, the smaller blob is eliminated.
return_sigmas : bool, optional
If True, the return array has a third column indicating the standard
deviations of the Gaussian kernels that detected the blobs.
"""
if method not in ["log", "dog", "doh"]:
raise ValueError("unknown method %s, must be 'log', 'dog' or 'doh'" % method)
if method == "log":
detector = feature.blob_log
elif method == "dog":
detector = feature.blob_dog
else:
detector = feature.blob_doh
blobs = detector(
input_image,
min_sigma=min_sigma,
max_sigma=max_sigma,
threshold=threshold,
overlap=overlap,
**kwargs,
)
if not return_sigmas:
blobs = blobs[:, :2]
return np.column_stack([blobs[:, 1], blobs[:, 0]])