當前位置: 首頁>>代碼示例>>Python>>正文


Python exposure.rescale_intensity方法代碼示例

本文整理匯總了Python中skimage.exposure.rescale_intensity方法的典型用法代碼示例。如果您正苦於以下問題:Python exposure.rescale_intensity方法的具體用法?Python exposure.rescale_intensity怎麽用?Python exposure.rescale_intensity使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.exposure的用法示例。


在下文中一共展示了exposure.rescale_intensity方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: scale_rgb

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def scale_rgb(layers, min_max, lidx):

    layers_c = np.empty(layers.shape, dtype='float32')

    # Rescale and blur.
    for li in range(0, 3):

        layer = layers[li]

        layer = np.float32(rescale_intensity(layer,
                                             in_range=(min_max[li][0],
                                                       min_max[li][1]),
                                             out_range=(0, 1)))

        layers_c[lidx[li]] = rescale_intensity(cv2.GaussianBlur(layer,
                                                                ksize=(3, 3),
                                                                sigmaX=3),
                                               in_range=(0, 1),
                                               out_range=(-1, 1))

    return layers_c 
開發者ID:jgrss,項目名稱:spfeas,代碼行數:23,代碼來源:spfunctions.py

示例2: project_object_edge

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def project_object_edge(img, dimension):
    """ scale the image, binarise with Othu and project to one dimension

    :param ndarray img:
    :param int dimension: select dimension for projection
    :return list(float):

    >>> img = np.zeros((20, 10, 3))
    >>> img[2:6, 1:7, :] = 1
    >>> img[10:17, 4:6, :] = 1
    >>> project_object_edge(img, 0).tolist()  # doctest: +NORMALIZE_WHITESPACE
    [0.0, 0.0, 0.7, 0.7, 0.7, 0.7, 0.0, 0.0, 0.0, 0.0,
     0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.0, 0.0, 0.0]
    """
    assert dimension in (0, 1), 'not supported dimension %i' % dimension
    assert img.ndim == 3, 'unsupported image shape %r' % img.shape
    img_gray = np.mean(img, axis=-1)
    img_gray = GaussianBlur(img_gray, (5, 5), 0)
    p_low, p_high = np.percentile(img_gray, (1, 95))
    img_gray = rescale_intensity(img_gray, in_range=(p_low, p_high))
    img_bin = img_gray > threshold_otsu(img_gray)
    img_edge = np.mean(img_bin, axis=1 - dimension)
    return img_edge 
開發者ID:Borda,項目名稱:BIRL,代碼行數:25,代碼來源:dataset.py

示例3: _stretch_im

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def _stretch_im(arr, str_clip):
    """Stretch an image in numpy ndarray format using a specified clip value.

    Parameters
    ----------
    arr: numpy array
        N-dimensional array in rasterio band order (bands, rows, columns)
    str_clip: int
        The % of clip to apply to the stretch. Default = 2 (2 and 98)

    Returns
    ----------
    arr: numpy array with values stretched to the specified clip %

    """
    s_min = str_clip
    s_max = 100 - str_clip
    arr_rescaled = np.zeros_like(arr)
    for ii, band in enumerate(arr):
        lower, upper = np.percentile(band, (s_min, s_max))
        arr_rescaled[ii] = exposure.rescale_intensity(
            band, in_range=(lower, upper)
        )
    return arr_rescaled.copy() 
開發者ID:earthlab,項目名稱:earthpy,代碼行數:26,代碼來源:plot.py

示例4: rgb2illumination_invariant

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def rgb2illumination_invariant(img, alpha, hist_eq=False):
    """
    this is an implementation of the illuminant-invariant color space published
    by Maddern2014
    http://www.robots.ox.ac.uk/~mobile/Papers/2014ICRA_maddern.pdf

    :param img:
    :param alpha: camera paramete
    :return:
    """
    ii_img = 0.5 + np.log(img[:, :, 1] + 1e-8) - \
        alpha * np.log(img[:, :, 2] + 1e-8) - \
        (1 - alpha) * np.log(img[:, :, 0] + 1e-8)

    # ii_img = exposure.rescale_intensity(ii_img, out_range=(0, 1))
    if hist_eq:
        ii_img = exposure.equalize_hist(ii_img)

    print np.max(ii_img)
    print np.min(ii_img)

    return ii_img 
開發者ID:fvisin,項目名稱:reseg,代碼行數:24,代碼來源:helper_dataset.py

示例5: scale_image_intensity

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def scale_image_intensity(img, im_range=1., quantiles=(2, 98)):
    """ scale image values with in give quntile range to filter some outlaiers

    :param ndarray img: input image
    :param im_range: range to scale image values (1. or 255)
    :param tuple(int,int) quantiles: scale image values in certain quantile range
    :return ndarray:

    >>> np.random.seed(0)
    >>> img = np.random.randint(10, 255, (25, 30))
    >>> im = scale_image_intensity(img)
    >>> im.min()
    0.0
    >>> im.max()
    1.0
    """
    p_low = np.percentile(img, quantiles[0])
    p_high = np.percentile(img, quantiles[1])
    img = exposure.rescale_intensity(img.astype(float), in_range=(p_low, p_high),
                                     out_range='float')
    if im_range == 255:
        img = np.array(img * im_range).astype(np.uint8)
    return img 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:25,代碼來源:data_io.py

示例6: process_image

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def process_image(orig_image_arr):
  ratio = orig_image_arr.shape[0] / 300.0

  display_image_arr = normalize_contrs(orig_image_arr,crop_display(orig_image_arr))
  #display image is now segmented.
  gry_disp_arr = cv2.cvtColor(display_image_arr, cv2.COLOR_BGR2GRAY)
  gry_disp_arr = exposure.rescale_intensity(gry_disp_arr, out_range= (0,255))

  #thresholding
  ret, thresh = cv2.threshold(gry_disp_arr,127,255,cv2.THRESH_BINARY)
  return thresh 
開發者ID:arturaugusto,項目名稱:display_ocr,代碼行數:13,代碼來源:digital_display_ocr.py

示例7: tensor2im

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def tensor2im(image_tensor, imgtype='img', datatype=np.uint8):
    image_numpy = image_tensor[0].cpu().float().numpy()
    if image_numpy.ndim == 4:# image_numpy (C x W x H x S)
        mid_slice = image_numpy.shape[-1]//2
        image_numpy = image_numpy[:,:,:,mid_slice]
    if image_numpy.shape[0] == 1:
        image_numpy = np.tile(image_numpy, (3, 1, 1))
    image_numpy = np.transpose(image_numpy, (1, 2, 0))
    if imgtype == 'img':
        image_numpy = (image_numpy + 8) / 16.0 * 255.0
    if np.unique(image_numpy).size == int(1):
        return image_numpy.astype(datatype)
    return rescale_intensity(image_numpy.astype(datatype)) 
開發者ID:ozan-oktay,項目名稱:Attention-Gated-Networks,代碼行數:15,代碼來源:util.py

示例8: save_image_collections

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def save_image_collections(x, filename, shape=(10, 10), scale_each=False,
                           transpose=False):
    """
    :param shape: tuple
        The shape of final big images.
    :param x: numpy array
        Input image collections. (number_of_images, rows, columns, channels) or
        (number_of_images, channels, rows, columns)
    :param scale_each: bool
        If true, rescale intensity for each image.
    :param transpose: bool
        If true, transpose x to (number_of_images, rows, columns, channels),
        i.e., put channels behind.
    :return: `uint8` numpy array
        The output image.
    """
    from skimage import io, img_as_ubyte
    from skimage.exposure import rescale_intensity
    makedirs(filename)
    n = x.shape[0]
    if transpose:
        x = x.transpose(0, 2, 3, 1)
    if scale_each is True:
        for i in range(n):
            x[i] = rescale_intensity(x[i], out_range=(0, 1))
    n_channels = x.shape[3]
    x = img_as_ubyte(x)
    r, c = shape
    if r * c < n:
        print('Shape too small to contain all images')
    h, w = x.shape[1:3]
    ret = np.zeros((h * r, w * c, n_channels), dtype='uint8')
    for i in range(r):
        for j in range(c):
            if i * c + j < n:
                ret[i * h:(i + 1) * h, j * w:(j + 1) * w, :] = x[i * c + j]
    ret = ret.squeeze()
    io.imsave(filename, ret) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:40,代碼來源:utils.py

示例9: hist_stretch

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def hist_stretch(im, percentiles=(1, 99)):
	p2, p98 = np.percentile(im, percentiles)
	im = im *100000
	#im = np.array(im, np.int64)

	return exposure.rescale_intensity(im, in_range=percentiles) 
開發者ID:gzuidhof,項目名稱:luna16,代碼行數:8,代碼來源:ensembleSubmissions.py

示例10: apply_random_intensity_rescale

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def apply_random_intensity_rescale(self, image, percent=30):
        """Apply random intensity rescale on an image (not used)"""
        random = np.random.randint(0, 100)
        if random < percent:
            v_min, v_max = np.percentile(image, (0.2, 99.8))
            image = exposure.rescale_intensity(image, in_range=(v_min, v_max))
        return image 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:9,代碼來源:data_generator.py

示例11: scale_intensity

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def scale_intensity(data, out_min=0, out_max=255):
    """Scale intensity of data in a range defined by [out_min, out_max], based on the 2nd and 98th percentiles."""
    p2, p98 = np.percentile(data, (2, 98))
    return rescale_intensity(data, in_range=(p2, p98), out_range=(out_min, out_max)) 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:6,代碼來源:core.py

示例12: normalize_volume

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def normalize_volume(volume):
    p10 = np.percentile(volume, 10)
    p99 = np.percentile(volume, 99)
    volume = rescale_intensity(volume, in_range=(p10, p99))
    m = np.mean(volume, axis=(0, 1, 2))
    s = np.std(volume, axis=(0, 1, 2))
    volume = (volume - m) / s
    return volume 
開發者ID:mateuszbuda,項目名稱:brain-segmentation-pytorch,代碼行數:10,代碼來源:utils.py

示例13: visualise_overlap

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def visualise_overlap(path_img, path_seg, path_out,
                      b_img_scale=BOOL_IMAGE_RESCALE_INTENSITY,
                      b_img_contour=BOOL_SAVE_IMAGE_CONTOUR,
                      b_relabel=BOOL_ANNOT_RELABEL,
                      segm_alpha=MIDDLE_ALPHA_OVERLAP):
    img, _ = tl_data.load_image_2d(path_img)
    seg, _ = tl_data.load_image_2d(path_seg)

    # normalise alpha in range (0, 1)
    segm_alpha = tl_visu.norm_aplha(segm_alpha)

    if b_relabel:
        seg, _, _ = segmentation.relabel_sequential(seg)

    if img.ndim == 2:  # for gray images of ovary
        img = np.rollaxis(np.tile(img, (3, 1, 1)), 0, 3)

    if b_img_scale:
        p_low, p_high = np.percentile(img, q=(3, 98))
        # plt.imshow(255 - img, cmap='Greys')
        img = exposure.rescale_intensity(img, in_range=(p_low, p_high),
                                         out_range='uint8')

    if b_img_contour:
        path_im_visu = os.path.splitext(path_out)[0] + '_contour.png'
        img_contour = segmentation.mark_boundaries(img[:, :, :3], seg,
                                                   color=COLOR_CONTOUR, mode='subpixel')
        plt.imsave(path_im_visu, img_contour)
    # else:  # for colour images of disc
    #     mask = (np.sum(img, axis=2) == 0)
    #     img[mask] = [255, 255, 255]

    fig = tl_visu.figure_image_segm_results(img, seg, SIZE_SUB_FIGURE,
                                            mid_labels_alpha=segm_alpha,
                                            mid_image_gray=MIDDLE_IMAGE_GRAY)
    fig.savefig(path_out)
    plt.close(fig) 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:39,代碼來源:run_overlap_images_segms.py

示例14: segment_image

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def segment_image(im, parameter_object):

    dims, rows, cols = im.shape

    image2segment = np.dstack((rescale_intensity(im[0],
                                                 in_range=(parameter_object.image_min,
                                                           parameter_object.image_max),
                                                 out_range=(0, 255)),
                               rescale_intensity(im[1],
                                                 in_range=(parameter_object.image_min,
                                                           parameter_object.image_max),
                                                 out_range=(0, 255)),
                               rescale_intensity(im[2],
                                                 in_range=(parameter_object.image_min,
                                                           parameter_object.image_max),
                                                 out_range=(0, 255))))

    felzer = felzenszwalb(np.uint8(image2segment),
                          scale=50,
                          sigma=.01,
                          min_size=5,
                          multichannel=True).reshape(rows, cols)

    props = regionprops(felzer)
    props = np.array([p.area for p in props], dtype='uint64')

    return fill_labels(np.uint64(felzer), props) 
開發者ID:jgrss,項目名稱:spfeas,代碼行數:29,代碼來源:spfunctions.py

示例15: segmenter_data_transform

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import rescale_intensity [as 別名]
def segmenter_data_transform(imb, rotate=None, normalize_pctwise=False):
    if isinstance(imb, tuple) and len(imb) == 2:
        imgs,labels = imb
    else:
        imgs = imb
    # rotate image if training
    if rotate is not None:
        for i in xrange(imgs.shape[0]):
            degrees = float(np.random.randint(rotate[0], rotate[1])) if \
                    isinstance(rotate, tuple) else rotate
            imgs[i,0] = scipy.misc.imrotate(imgs[i,0], degrees, interp='bilinear')
            if isinstance(imb, tuple):
                labels[i,0] = scipy.misc.imrotate(labels[i,0], degrees, interp='bilinear')
    # assume they are square
    sz = c.fcn_img_size
    x,y = np.random.randint(0,imgs.shape[2]-sz,2) if imgs.shape[2] > sz else (0,0)
    imgs = nn.utils.floatX(imgs[:,:, x:x+sz, y:y+sz])/255.
    if not normalize_pctwise:
        pad = imgs.shape[2] // 5
        cut = imgs[:,0,pad:-pad,pad:-pad]
        mu = cut.mean(axis=(1,2)).reshape(imgs.shape[0],1,1,1)
        sigma = cut.std(axis=(1,2)).reshape(imgs.shape[0],1,1,1)
        imgs = (imgs - mu) / sigma
        imgs = np.minimum(3, np.maximum(-3, imgs))
    else:
        pclow, pchigh = normalize_pctwise if isinstance(normalize_pctwise, tuple) else (20,70)
        for i in xrange(imgs.shape[0]):
            pl,ph = np.percentile(imgs[i],(pclow, pchigh))
            imgs[i] = exposure.rescale_intensity(imgs[i], in_range=(pl, ph));
            imgs[i] = 2*imgs[i]/imgs[i].max() - 1.
        # or other rescaling here to approximate ~ N(0,1)
    if isinstance(imb, tuple):
        labels = nn.utils.floatX(labels[:,:, x:x+sz, y:y+sz])
        return imgs, labels
    return imgs 
開發者ID:woshialex,項目名稱:diagnose-heart,代碼行數:37,代碼來源:dsb_utils.py


注:本文中的skimage.exposure.rescale_intensity方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。