當前位置: 首頁>>代碼示例>>Python>>正文


Python exposure.adjust_gamma方法代碼示例

本文整理匯總了Python中skimage.exposure.adjust_gamma方法的典型用法代碼示例。如果您正苦於以下問題:Python exposure.adjust_gamma方法的具體用法?Python exposure.adjust_gamma怎麽用?Python exposure.adjust_gamma使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.exposure的用法示例。


在下文中一共展示了exposure.adjust_gamma方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: brightness

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def brightness(x, gamma=1, gain=1, is_random=False):
    """Change the brightness of a single image, randomly or non-randomly.

    Parameters
    -----------
    x : numpy array
        An image with dimension of [row, col, channel] (default).
    gamma : float, small than 1 means brighter.
        Non negative real number. Default value is 1.

        - If is_random is True, gamma in a range of (1-gamma, 1+gamma).
    gain : float
        The constant multiplier. Default value is 1.
    is_random : boolean, default False
        - If True, randomly change brightness.

    References
    -----------
    - `skimage.exposure.adjust_gamma <http://scikit-image.org/docs/dev/api/skimage.exposure.html>`_
    - `chinese blog <http://www.cnblogs.com/denny402/p/5124402.html>`_
    """
    if is_random:
        gamma = np.random.uniform(1-gamma, 1+gamma)
    x = exposure.adjust_gamma(x, gamma, gain)
    return x 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:27,代碼來源:prepro.py

示例2: brightness_multi

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def brightness_multi(x, gamma=1, gain=1, is_random=False):
    """Change the brightness of multiply images, randomly or non-randomly.
    Usually be used for image segmentation which x=[X, Y], X and Y should be matched.

    Parameters
    -----------
    x : list of numpy array
        List of images with dimension of [n_images, row, col, channel] (default).
    others : see ``brightness``.
    """
    if is_random:
        gamma = np.random.uniform(1-gamma, 1+gamma)

    results = []
    for data in x:
        results.append( exposure.adjust_gamma(data, gamma, gain) )
    return np.asarray(results)


# contrast 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:22,代碼來源:prepro.py

示例3: load_image

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def load_image(filename, width, invert, gamma):
    # Read the image
    img = imageio.imread(filename)

    if img.shape[-1] == 4:
        # Blend the alpha channel
        img = color.rgba2rgb(img)

    # Grayscale
    img = color.rgb2gray(img)

    # Resample and adjust the aspect ratio
    width_px = (3 * width) * 16

    img_width = 1.0 * width_px
    img_height = int(img.shape[0] * 3 * (img_width / (4 * img.shape[1])))
    img = transform.resize(img, (img_height, img_width), anti_aliasing=True, mode='constant')

    # Adjust the exposure
    img = exposure.adjust_gamma(img, gamma)

    if invert:
        img = 1 - img

    return img 
開發者ID:hughpyle,項目名稱:ASR33,代碼行數:27,代碼來源:image1.py

示例4: bsd_preprocess

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def bsd_preprocess(im, tg):
    '''Data normalizations and augmentations'''
    fliplr = (np.random.rand() > 0.5)
    flipud = (np.random.rand() > 0.5)
    gamma = np.minimum(np.maximum(1. + np.random.randn(), 0.5), 1.5)
    if fliplr:
        im = np.fliplr(im)
        tg = np.fliplr(tg)
    if flipud:
        im = np.flipud(im)
        tg = np.flipud(tg)
    im = skiex.adjust_gamma(im, gamma)
    return im, tg 
開發者ID:deworrall92,項目名稱:harmonicConvolutions,代碼行數:15,代碼來源:run_BSD.py

示例5: apply_random_exposure_adjust

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def apply_random_exposure_adjust(self, image, percent=30):
        """Apply random exposure adjustment on an image (not used)"""
        random = np.random.randint(0, 100)
        if random < percent:
            image = exposure.adjust_gamma(image, gamma=0.4, gain=0.9)
            # another exposure algo
            # image = exposure.adjust_log(image)
        return image 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:10,代碼來源:data_generator.py

示例6: data_augmentation

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def data_augmentation(image):
    # Input should be ONE image with shape: (L, W, CH)
    options = ["gaussian_smooth", "rotate", "zoom", "adjust_gamma"]  
    # Probabilities for each augmentation were arbitrarily assigned 
    which_option = np.random.choice(options)
    if which_option == "gaussian_smooth": 
        sigma = np.random.uniform(0.2, 1.0)
        image = gaussian_filter(image, sigma)
    elif which_option == "zoom": 
      # Assumes image is square
        min_crop = int(image.shape[0]*0.85)
        max_crop = int(image.shape[0]*0.95)
        crop_size = np.random.randint(min_crop, max_crop) 
        crop = crop_center(image, crop_size, crop_size)
        if crop.shape[-1] == 1: crop = crop[:,:,0]
        image = scipy.misc.imresize(crop, image.shape) 
    elif which_option == "rotate":
        angle = np.random.uniform(-15, 15)
        image = rotate(image, angle, reshape=False)
    elif which_option == "adjust_gamma": 
        image = image / 255. 
        image = exposure.adjust_gamma(image, np.random.uniform(0.75,1.25))
        image = image * 255. 
    if len(image.shape) == 2: image = np.expand_dims(image, axis=2)
    return image 

# == I/O == # 
開發者ID:i-pan,項目名稱:kaggle-rsna18,代碼行數:29,代碼來源:TrainClassifierEnsemble.py

示例7: data_augmentation

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def data_augmentation(image):
    # Input should be ONE image with shape: (L, W, CH)
    options = ["gaussian_smooth", "vertical_flip", "rotate", "zoom", "adjust_gamma"] 
    # Probabilities for each augmentation were arbitrarily assigned 
    which_option = np.random.choice(options)
    if which_option == "vertical_flip":
        image = np.fliplr(image)
    if which_option == "horizontal_flip": 
        image = np.flipud(image) 
    elif which_option == "gaussian_smooth": 
        sigma = np.random.uniform(0.2, 1.0)
        image = gaussian_filter(image, sigma)
    elif which_option == "zoom": 
      # Assumes image is square
        min_crop = int(image.shape[0]*0.85)
        max_crop = int(image.shape[0]*0.95)
        crop_size = np.random.randint(min_crop, max_crop) 
        crop = crop_center(image, crop_size, crop_size)
        if crop.shape[-1] == 1: crop = crop[:,:,0]
        image = scipy.misc.imresize(crop, image.shape) 
    elif which_option == "rotate":
        angle = np.random.uniform(-15, 15)
        image = rotate(image, angle, reshape=False)
    elif which_option == "adjust_gamma": 
        image = image / 255. 
        image = exposure.adjust_gamma(image, np.random.uniform(0.75,1.25))
        image = image * 255. 
    if len(image.shape) == 2: image = np.expand_dims(image, axis=2)
    return image 
開發者ID:i-pan,項目名稱:kaggle-rsna18,代碼行數:31,代碼來源:PredictOneClassifier.py

示例8: load_image

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def load_image(filename, width, invert, gamma):
    # Read the image
    img = imageio.imread(filename)

    if img.shape[-1] == 4:
        # Blend the alpha channel
        img = color.rgba2rgb(img, background=(0, 0, 0))

    # Grayscale
    img = color.rgb2gray(img)

    # Adjust the exposure
    img = exposure.adjust_gamma(img, gamma)

    if invert:
        img = util.invert(img)

    # Resample and adjust the aspect ratio
    width_px = (3 * width) * CELLPX

    img_width = 1.0 * width_px
    img_height = int(img.shape[0] * 3 * (img_width / (4 * img.shape[1])))
    img = transform.resize(img, (img_height, img_width), anti_aliasing=True, mode='reflect')

    img = (img - img.min()) / (img.max() - img.min())
    return img 
開發者ID:hughpyle,項目名稱:ASR33,代碼行數:28,代碼來源:image2.py

示例9: TF_adjust_gamma

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def TF_adjust_gamma(x, gamma=1.0):
    assert len(x.shape) == 3
    h, w, nc = x.shape
    return adjust_gamma(x, gamma) 
開發者ID:HazyResearch,項目名稱:tanda,代碼行數:6,代碼來源:image_tfs.py

示例10: random_gamma

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def random_gamma(gamma=lambda: np.random.rand() * 0.4 + 0.8):
    def call(x):
        return exposure.adjust_gamma(x, gamma())

    return call 
開發者ID:mctigger,項目名稱:KagglePlanetPytorch,代碼行數:7,代碼來源:transforms.py

示例11: __getitem__

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def __getitem__(self, idx):
        pkl_path = os.path.join(self.root_dir,self.namelist[idx])
        pkl = pickle.load(open(pkl_path, 'rb'), encoding='bytes')
        img = pkl[0].astype('float32')/255.0
        label = pkl[1][:,:3]
        
        # re-sample ground truth, ShapeNet point cloud ground truth by Wang et al. is not of the same number across images
        if label.shape[0]<self.refine_size:
            # re-sample
            sub_iter = self.refine_size // label.shape[0]
            sub_num =  self.refine_size - label.shape[0]*sub_iter
            label_n = label.copy()
            for i in range(sub_iter-1):
                label = np.concatenate((label, label_n), axis=0)
            subidx = np.random.permutation(label_n.shape[0])
            subidx = subidx[:sub_num]
            label = np.concatenate((label, label_n[subidx]), axis=0)

        # load mask
        mask_path = self.root_dir+self.namelist[idx][:5]+'mask/'+self.namelist[idx][19:-3]+'png'
        mask = scipy.ndimage.imread(mask_path)
        mask = np.expand_dims(mask,axis=2)

        subidx = np.random.permutation(label.shape[0])
        subidx = subidx[:self.refine_size]
        label_f = label[subidx]
        label_f = np.float32(label_f)

        # data augmentation
        if self.train_type == 'train':
            # gamma
            random.seed()
            g_prob = np.random.random()*1+0.5
            img = exposure.adjust_gamma(img, g_prob)
            # intensity
            random.seed()
            g_prob = np.random.random()*127
            img = exposure.rescale_intensity(img*255.0, in_range=(g_prob, 255))
            # color channel
            random.seed()
            g_prob = np.random.random()*0.4+0.8
            img[:,:,0] = img[:,:,0]*g_prob
            random.seed()
            g_prob = np.random.random()*0.4+0.8
            img[:,:,1] = img[:,:,1]*g_prob
            random.seed()
            g_prob = np.random.random()*0.4+0.8
            img[:,:,2] = img[:,:,2]*g_prob
            np.clip(img, 0.0, 1.0 , out=img)

        # permute dim
        if self.transform:
            if self.train_type == 'train':
                img = data_transforms['train'](img).float()
                mask = data_transforms['train'](mask).float() 
            else:
                img = data_transforms['val'](img).float()
                mask = data_transforms['val'](mask).float()

        return img, label_f,  mask 
開發者ID:zouchuhang,項目名稱:Silhouette-Guided-3D,代碼行數:62,代碼來源:data_generator.py

示例12: show_segmented_image

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def show_segmented_image(self, test_img, modality='t1c', show = False):
        '''
        Creates an image of original brain with segmentation overlay
        INPUT   (1) str 'test_img': filepath to test image for segmentation, including file extension
                (2) str 'modality': imaging modelity to use as background. defaults to t1c. options: (flair, t1, t1c, t2)
                (3) bool 'show': If true, shows output image. defaults to False.
        OUTPUT  (1) if show is True, shows image of segmentation results
                (2) if show is false, returns segmented image.
        '''
        modes = {'flair':0, 't1':1, 't1c':2, 't2':3}

        segmentation = self.predict_image(test_img, show=False)
        img_mask = np.pad(segmentation, (16,16), mode='edge')
        ones = np.argwhere(img_mask == 1)
        twos = np.argwhere(img_mask == 2)
        threes = np.argwhere(img_mask == 3)
        fours = np.argwhere(img_mask == 4)

        test_im = io.imread(test_img)
        test_back = test_im.reshape(5,240,240)[-2]
        # overlay = mark_boundaries(test_back, img_mask)
        gray_img = img_as_float(test_back)

        # adjust gamma of image
        image = adjust_gamma(color.gray2rgb(gray_img), 0.65)
        sliced_image = image.copy()
        red_multiplier = [1, 0.2, 0.2]
        yellow_multiplier = [1,1,0.25]
        green_multiplier = [0.35,0.75,0.25]
        blue_multiplier = [0,0.25,0.9]

        # change colors of segmented classes
        for i in xrange(len(ones)):
            sliced_image[ones[i][0]][ones[i][1]] = red_multiplier
        for i in xrange(len(twos)):
            sliced_image[twos[i][0]][twos[i][1]] = green_multiplier
        for i in xrange(len(threes)):
            sliced_image[threes[i][0]][threes[i][1]] = blue_multiplier
        for i in xrange(len(fours)):
            sliced_image[fours[i][0]][fours[i][1]] = yellow_multiplier

        if show:
            io.imshow(sliced_image)
            plt.show()

        else:
            return sliced_image 
開發者ID:naldeborgh7575,項目名稱:brain_segmentation,代碼行數:49,代碼來源:Segmentation_Models.py

示例13: load_frame_2_tensors

# 需要導入模塊: from skimage import exposure [as 別名]
# 或者: from skimage.exposure import adjust_gamma [as 別名]
def load_frame_2_tensors(self, frame, out_frame_dim):
        C, H, W = out_frame_dim

        tag = frame['tag']
        if tag is not None:
            is_neg = True if 'n' in tag else False
        else:
            is_neg = False

        K = K_from_frame(frame)
        Tcw = np.asarray(frame['extrinsic_Tcw'][:3, :], dtype=np.float32).reshape((3, 4))
        Rcw, tcw = Tcw[:3, :3], Tcw[:3, 3]
        img_file_name = frame['file_name']
        depth_file_name = frame['depth_file_name']

        # Load image and depth
        img = cv2.imread(os.path.join(self.cambridge_base_dir, img_file_name))
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
        depth = load_depth_from_tiff((os.path.join(self.cambridge_base_dir, depth_file_name)))
        ori_H, ori_W, _ = img.shape

        # Post-process image and depth (fill the holes with cross bilateral filter)
        img = cv2.resize(img, dsize=(int(W), int(H)))
        if self.random_gamma:
            gamma = np.random.uniform(low=self.random_gamma_thres[0], high=self.random_gamma_thres[1])
            img = adjust_gamma(img, gamma)

        depth = cv2.resize(depth, dsize=(int(W), int(H)), interpolation=cv2.INTER_NEAREST)
        if self.remove_depth_outlier > 0:
            depth = clamp_data_with_ratio(depth, ratio=self.remove_depth_outlier, fill_value=1e-5)
        depth[depth < 1e-5] = 1e-5

        # camera intrinsic parameters:
        K[0, 0] *= (W/ori_W)
        K[0, 2] *= (W/ori_W)
        K[1, 1] *= (H/ori_H)
        K[1, 2] *= (H/ori_H)

        # camera motion representation: (center, rotation_center2world)
        c = camera_center_from_Tcw(Rcw, tcw)
        Rwc = np.eye(4)
        Rwc[:3, :3] = Rcw.T
        q = quaternion_from_matrix(Rwc)
        log_q = log_quat(q)
        pose_vector = np.concatenate((c, log_q)).astype(np.float32)

        # convert to torch.tensor
        ori_img_tensor = torch.from_numpy(img.transpose((2, 0, 1)))  # (C, H, W)
        img_tensor = ori_img_tensor.clone()
        if self.transform_func:
            img_tensor = self.transform_func(img_tensor)
        depth_tensor = torch.from_numpy(depth).view(1, H, W)  # (1, H, W)
        pose_vector = torch.from_numpy(pose_vector)           # (1, 3)
        Tcw_tensor = torch.from_numpy(Tcw)                    # (3, 4)
        K_tensor = torch.from_numpy(K)                        # (3, 3)
        neg_tensor = torch.from_numpy(np.asarray([1], dtype=np.int32)) if is_neg is True else \
            torch.from_numpy(np.asarray([0], dtype=np.int32))

        return pose_vector, img_tensor, depth_tensor, K_tensor, Tcw_tensor, ori_img_tensor, neg_tensor 
開發者ID:sfu-gruvi-3dv,項目名稱:sanet_relocal_demo,代碼行數:61,代碼來源:cambridge_dataset.py


注:本文中的skimage.exposure.adjust_gamma方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。