本文整理匯總了Python中skimage.data方法的典型用法代碼示例。如果您正苦於以下問題:Python skimage.data方法的具體用法?Python skimage.data怎麽用?Python skimage.data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skimage
的用法示例。
在下文中一共展示了skimage.data方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_image
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def load_image(path):
"""Open, load and normalize an image.
:param path: Image path.
:type path: String
:returns: Normalized image.
:rtype: np.ndarray
"""
img = skimage.data.imread(path)
if img.dtype == np.uint8:
normalizer = 255.
else:
normalizer = 65535.
img = img / normalizer
return img.astype(np.float32)
示例2: init_file_lists
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def init_file_lists(self):
"""
Load and split the BSDS500 dataset.
:returns: Two lists of train and test file paths.
:rtype: Tuple
"""
if self.noise_type == 'gaussian_random_sigma':
self.patch_size = 50
self.train_set_multiplier = 960 # to have 128 * 3000 patches in one epoche
data_path = os.path.join(ROOT_DIR, 'data/bsds_500')
if self.grayscale:
train_files = glob(os.path.join(data_path, "greyscale_images/train/*.png"))
test_files = glob(os.path.join(data_path, "greyscale_images/test/*.png"))
self.img_decoder = tf.image.decode_png
else:
train_files = glob(os.path.join(data_path, 'color_images/train/*.jpg')) + \
glob(os.path.join(data_path, 'color_images/test/*.jpg'))
train_files = train_files[:400]
test_files = glob(os.path.join(data_path, 'data/color_images/val/*.jpg'))[:68]
return train_files, test_files
示例3: load_data
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def load_data(data_dir):
"""Loads a data set and returns two lists:
images: a list of Numpy arrays, each representing an image.
labels: a list of numbers that represent the images labels.
"""
# Get all the subdirectories of the data folder (i.e. traing or test). Each folder represents an unique label.
directories = [d for d in os.listdir(data_dir)
if os.path.isdir(os.path.join(data_dir, d))]
# Iterate for loop through the label directories and collect the data in two lists, labels and images.
labels = []
images = []
for d in directories:
label_dir = os.path.join(data_dir, d)
file_names = [os.path.join(label_dir, f) for f in os.listdir(label_dir) if f.endswith(".ppm")]
# For each label, load it's images and add them to the images list.
# And add the label number (i.e. directory name) to the labels list.
for f in file_names:
images.append(skimage.data.imread(f))
labels.append(int(d))
return images, labels
# Load training and testing datasets.
示例4: plot
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def plot(data, test, predicted, figsize=(5, 6)):
data = [reshape(d) for d in data]
test = [reshape(d) for d in test]
predicted = [reshape(d) for d in predicted]
fig, axarr = plt.subplots(len(data), 3, figsize=figsize)
for i in range(len(data)):
if i==0:
axarr[i, 0].set_title('Train data')
axarr[i, 1].set_title("Input data")
axarr[i, 2].set_title('Output data')
axarr[i, 0].imshow(data[i])
axarr[i, 0].axis('off')
axarr[i, 1].imshow(test[i])
axarr[i, 1].axis('off')
axarr[i, 2].imshow(predicted[i])
axarr[i, 2].axis('off')
plt.tight_layout()
plt.savefig("result.png")
plt.show()
示例5: ReadDirNames
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def ReadDirNames(DirNamesPath, TrainPath):
"""
Inputs:
Path is the path of the file you want to read
Outputs:
DirNames is the data loaded from ./TxtFiles/DirNames.txt which has full path to all image files without extension
"""
# Read DirNames file
DirNames = open(DirNamesPath, 'r')
DirNames = DirNames.read()
DirNames = DirNames.split()
# Read TestIdxs file
TrainIdxs = open(TrainPath, 'r')
TrainIdxs = TrainIdxs.read()
TrainIdxs = TrainIdxs.split()
TrainIdxs = [int(val) for val in TrainIdxs]
TrainNames = [DirNames[i] for i in TrainIdxs]
return DirNames, TrainNames
示例6: ReadDirNames
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def ReadDirNames(DirNamesPath, LabelNamesPath, TrainPath):
"""
Inputs:
Path is the path of the file you want to read
Outputs:
DirNames is the data loaded from ./TxtFiles/DirNames.txt which has full path to all image files without extension
"""
# Read DirNames and LabelNames files
DirNames = open(DirNamesPath, 'r')
DirNames = DirNames.read()
DirNames = DirNames.split()
LabelNames = open(LabelNamesPath, 'r')
LabelNames = LabelNames.read()
LabelNames = LabelNames.split()
# Read Train, Val and Test Idxs
TrainIdxs = open(TrainPath, 'r')
TrainIdxs = TrainIdxs.read()
TrainIdxs = TrainIdxs.split()
TrainIdxs = [int(val) for val in TrainIdxs]
TrainNames = [DirNames[i] for i in TrainIdxs]
TrainLabels = [LabelNames[i] for i in TrainIdxs]
return DirNames, TrainNames, TrainLabels
示例7: classify_image
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def classify_image(path_dir=cfg.ROOT + '/data/download/words',
dest_path=cfg.ROOT + '/data/download/words-classify'):
"""
:param path_dir:
:param dest_path:
:return:
"""
temp = filter(lambda s: not s.startswith("."), os.listdir(path_dir))
for words_name in temp:
print words_name
if not os.path.exists(dest_path):
os.makedirs(dest_path)
sub_root_path = os.path.join(path_dir, words_name)
if os.path.isdir(sub_root_path):
classify_image(sub_root_path, os.path.join(dest_path, words_name))
continue
img = cv2.imread(sub_root_path, 0)
new_img = judge_the_image_size(img)
cv2.imwrite(os.path.join(dest_path, words_name), new_img)
return 0
示例8: test_other_dtypes
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def test_other_dtypes(self):
aug = iaa.AllChannelsHistogramEqualization()
# np.uint16: cv2.error: OpenCV(3.4.5) (...)/histogram.cpp:3345:
# error: (-215:Assertion failed)
# src.type() == CV_8UC1 in function 'equalizeHist'
# np.uint32: TypeError: src data type = 6 is not supported
# np.uint64: see np.uint16
# np.int8: see np.uint16
# np.int16: see np.uint16
# np.int32: see np.uint16
# np.int64: see np.uint16
# np.float16: TypeError: src data type = 23 is not supported
# np.float32: see np.uint16
# np.float64: see np.uint16
# np.float128: TypeError: src data type = 13 is not supported
for dtype in [np.uint8]:
with self.subTest(dtype=np.dtype(dtype).name):
min_value, _center_value, max_value = \
iadt.get_value_range_of_dtype(dtype)
dynamic_range = max_value + abs(min_value)
if np.dtype(dtype).kind == "f":
img = np.zeros((16,), dtype=dtype)
for i in sm.xrange(16):
img[i] = min_value + i * (0.01 * dynamic_range)
img = img.reshape((4, 4))
else:
img = np.arange(
min_value, min_value + 16, dtype=dtype).reshape((4, 4))
img_aug = aug.augment_image(img)
assert img_aug.dtype.name == np.dtype(dtype).name
assert img_aug.shape == img.shape
assert np.min(img_aug) < min_value + 0.1 * dynamic_range
assert np.max(img_aug) > max_value - 0.1 * dynamic_range
示例9: load_deblurring_grey_data
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def load_deblurring_grey_data(experiment_name=None, image_name=None):
"""
Load the data for the grayscale deblurring experiments on 11 standard test
images first conducted in [A machine learning approach for non-blind image deconvolution](http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Schuler_A_Machine_Learning_2013_CVPR_paper.pdf).
:param experiment_name: Name of the experiment a-e: experiment_*
:type experiment_name: String
:param image_name: Name of the image
:type image_name: String
:returns: Experiment data as Dict or single Tuple
:rtype: Tuple
"""
crop = 12
data_dir = os.path.join(ROOT_DIR, 'data/deblurring_grey')
experiments_data = {os.path.basename(experiment_dir):
{os.path.basename(image_dir):
{'f': load_image(os.path.join(image_dir, 'blurred_observation.png')),
'img': load_image(os.path.join(image_dir, 'original.png'))}
for image_dir in glob(experiment_dir + '/*')
if os.path.isdir(image_dir)}
for experiment_dir in glob(data_dir + '/*')}
for experiment, experiment_images in experiments_data.items():
kernel_img = load_image(os.path.join(data_dir, experiment + '/kernel.png'))
kernel_img /= kernel_img.sum()
experiment_images['kernel_img'] = kernel_img
if experiment_name is not None:
experiment_data = experiments_data[experiment_name]
if image_name is not None:
image_data = experiment_data[image_name]
return (image_data['f'], image_data['img'], experiment_data['kernel_img'], crop)
return experiment_data, crop
else:
if image_name is not None:
print("Specifying only an image is not possible.")
return experiments_data, crop
示例10: load_demosaicking_data
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def load_demosaicking_data(image_name=None, dataset="mc_master"):
"""
Load McMaster or Kodak demosaicking data.
:param image_name: Name of a particular image
:type image_name: String
:return test_images: Experiment data as Dict or single Tuple
:rtype test_images: Tuple
"""
crop = 5
image_paths = glob(os.path.join(ROOT_DIR,
"data/demosaicking",
dataset.lower(),
"*"))
def sort_key(d): return os.path.splitext(os.path.basename(d))[0]
data = {os.path.splitext(os.path.basename(d))[0]:
{'img': load_image(d)}
for d in sorted(image_paths, key=sort_key)}
if image_name is not None:
return (data[str(image_name).lower()]['img'],
crop)
else:
return data, crop
示例11: __init__
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def __init__(self, opt, test_epochs):
"""
Class constructor.
:param opt: Option flags.
:type opt: tf.app.flags.FLAGS
:param test_epochs: Number of test_epochs. Usually None for 1 entire epoch.
:type test_epochs: Int
"""
self.input_shape = (self.patch_size, self.patch_size, opt.channels)
self.train_shape = (self.patch_size, self.patch_size, opt.channels)
self.test_shape = (self.patch_size, self.patch_size, opt.channels)
self.sigma_noise = opt.sigma_noise
self.noise_type = opt.noise_type
self.batch_size = opt.batch_size
self.img_decoder = tf.image.decode_jpeg
self.is_train = tf.placeholder(tf.bool, name='is_train')
train_files, test_files = self.init_file_lists()
train_pipe = self.tf_data_pipeline(train_files * self.train_set_multiplier,
self.train_shape,
'train_pipeline',
opt.train_epochs)
test_pipe = self.tf_data_pipeline(test_files * self.test_set_multiplier,
self.test_shape,
'test_pipeline',
test_epochs,
train=False)
Pipeline = namedtuple('Pipeline',
['data', 'labels', 'num', 'epochs', 'batch_size'])
self.train = Pipeline(*train_pipe,
epochs=opt.train_epochs,
batch_size=opt.batch_size)
self.test = Pipeline(*test_pipe,
epochs=test_epochs,
batch_size=opt.batch_size)
示例12: _label_statistics
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def _label_statistics(image_paths):
'''
Calculates label statistics (number of picked pixels for each class)
Parameters
----------
image_paths : list
List of absolute paths for picked images
Returns
-------
array: numpy array
Number of selected pixels per class
'''
ds = KittiDataset()
def _rgb_2_label(rgb):
return ds.color2label[tuple(rgb)].trainId
total_counts = np.zeros(ds.num_classes())
for img in image_paths:
rgb = skimage.data.load(img)
labels = np.apply_along_axis(_rgb_2_label, 2, rgb)
indices, counts = np.unique(labels, return_counts=True)
if indices[-1] >= ds.num_classes():
indices = indices[0:-1]
counts = counts[0:-1]
total_counts[indices] += counts
return total_counts
示例13: img_to_array
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def img_to_array(img, data_format=None):
"""Converts a PIL Image instance to a Numpy array.
# Arguments
img: PIL Image instance.
data_format: Image data format.
# Returns
A 3D Numpy array.
# Raises
ValueError: if invalid `img` or `data_format` is passed.
"""
if data_format is None:
data_format = K.image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ', data_format)
# Numpy array x has format (height, width, channel)
# or (channel, height, width)
# but original PIL image has format (width, height, channel)
x = np.asarray(img, dtype=K.floatx())
if len(x.shape) == 3:
if data_format == 'channels_first':
x = x.transpose(2, 0, 1)
elif len(x.shape) == 2:
if data_format == 'channels_first':
x = x.reshape((1, x.shape[0], x.shape[1]))
else:
x = x.reshape((x.shape[0], x.shape[1], 1))
else:
raise ValueError('Unsupported image shape: ', x.shape)
return x
示例14: __init__
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def __init__(self, x, y, image_data_generator,
batch_size=32, shuffle=False, seed=None,
data_format=None,
save_to_dir=None, save_prefix='', save_format='png'):
if y is not None and len(x) != len(y):
raise ValueError('X (images tensor) and y (labels) '
'should have the same length. '
'Found: X.shape = %s, y.shape = %s' %
(np.asarray(x).shape, np.asarray(y).shape))
if data_format is None:
data_format = K.image_data_format()
self.x = np.asarray(x, dtype=K.floatx())
if self.x.ndim != 4:
raise ValueError('Input data in `NumpyArrayIterator` '
'should have rank 4. You passed an array '
'with shape', self.x.shape)
channels_axis = 3 if data_format == 'channels_last' else 1
if self.x.shape[channels_axis] not in {1, 3, 4}:
warnings.warn('NumpyArrayIterator is set to use the '
'data format convention "' + data_format + '" '
'(channels on axis ' + str(channels_axis) + '), i.e. expected '
'either 1, 3 or 4 channels on axis ' + str(channels_axis) + '. '
'However, it was passed an array with shape ' + str(self.x.shape) +
' (' + str(self.x.shape[channels_axis]) + ' channels).')
if y is not None:
self.y = np.asarray(y)
else:
self.y = None
self.image_data_generator = image_data_generator
self.data_format = data_format
self.save_to_dir = save_to_dir
self.save_prefix = save_prefix
self.save_format = save_format
super(NumpyArrayIterator, self).__init__(x.shape[0], batch_size, shuffle, seed)
示例15: _get_batches_of_transformed_samples
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import data [as 別名]
def _get_batches_of_transformed_samples(self, index_array):
batch_x = np.zeros((len(index_array),) + self.image_shape, dtype=K.floatx())
grayscale = self.color_mode == 'grayscale'
# build batch of image data
for i, j in enumerate(index_array):
fname = self.filenames[j]
img = load_img(os.path.join(self.directory, fname),
grayscale=grayscale,
target_size=self.target_size)
x = img_to_array(img, data_format=self.data_format)
x = self.image_data_generator.random_transform(x)
x = self.image_data_generator.standardize(x)
batch_x[i] = x
# optionally save augmented images to disk for debugging purposes
if self.save_to_dir:
for i, j in enumerate(index_array):
img = array_to_img(batch_x[i], self.data_format, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix,
index=j,
hash=np.random.randint(1e7),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
# build batch of labels
if self.class_mode == 'input':
batch_y = batch_x.copy()
elif self.class_mode == 'sparse':
batch_y = self.classes[index_array]
elif self.class_mode == 'binary':
batch_y = self.classes[index_array].astype(K.floatx())
elif self.class_mode == 'categorical':
batch_y = np.zeros((len(batch_x), self.num_classes), dtype=K.floatx())
for i, label in enumerate(self.classes[index_array]):
batch_y[i, label] = 1.
else:
return batch_x
return batch_x, batch_y