當前位置: 首頁>>代碼示例>>Python>>正文


Python moves.xrange方法代碼示例

本文整理匯總了Python中six.moves.xrange方法的典型用法代碼示例。如果您正苦於以下問題:Python moves.xrange方法的具體用法?Python moves.xrange怎麽用?Python moves.xrange使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在six.moves的用法示例。


在下文中一共展示了moves.xrange方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_images

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def load_images(input_dir, metadata_file_path, batch_shape):
    """Retrieve numpy arrays of images and labels, read from a directory."""
    num_images = batch_shape[0]
    with open(metadata_file_path) as input_file:
        reader = csv.reader(input_file)
        header_row = next(reader)
        rows = list(reader)

    row_idx_image_id = header_row.index('ImageId')
    row_idx_true_label = header_row.index('TrueLabel')
    images = np.zeros(batch_shape)
    labels = np.zeros(num_images, dtype=np.int32)
    for idx in xrange(num_images):
        row = rows[idx]
        filepath = os.path.join(input_dir, row[row_idx_image_id] + '.png')

        with tf.gfile.Open(filepath, 'rb') as f:
            image = np.array(
                Image.open(f).convert('RGB')).astype(np.float) / 255.0
        images[idx, :, :, :] = image
        labels[idx] = int(row[row_idx_true_label])
    return images, labels 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:24,代碼來源:test_imagenet_attacks.py

示例2: jacobian_graph

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def jacobian_graph(predictions, x, nb_classes):
    """
    Create the Jacobian graph to be ran later in a TF session
    :param predictions: the model's symbolic output (linear output,
        pre-softmax)
    :param x: the input placeholder
    :param nb_classes: the number of classes the model has
    :return:
    """
    # This function will return a list of TF gradients
    list_derivatives = []

    # Define the TF graph elements to compute our derivatives for each class
    for class_ind in xrange(nb_classes):
        derivatives, = tf.gradients(predictions[:, class_ind], x)
        list_derivatives.append(derivatives)

    return list_derivatives 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:attacks_tf.py

示例3: topsort

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def topsort(nodes):
  n = len(nodes)
  deg = [0]*n
  g = [[] for _ in xrange(n)]
  for i,node in enumerate(nodes):
    if 'inputs' in node:
      for j in node['inputs']:
        deg[i] += 1
        g[j[0]].append(i)
  from collections import deque
  q = deque([i for i in xrange(n) if deg[i]==0])
  res = []
  for its in xrange(n):
    i = q.popleft()
    res.append(nodes[i])
    for j in g[i]:
      deg[j] -= 1
      if deg[j] == 0:
        q.append(j)
  new_ids=dict([(node['name'],i) for i,node in enumerate(res)])
  for node in res:
    if 'inputs' in node:
      for j in node['inputs']:
        j[0]=new_ids[nodes[j[0]]['name']]
  return res 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:utils.py

示例4: run_scenario

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def run_scenario(result_text, rounds, num_requests, num_chunks, parallel_lz4,
                 use_async, async_arctic_pool_workers=None):
    aclz4.enable_parallel_lz4(parallel_lz4)
    if async_arctic_pool_workers is not None:
        ASYNC_ARCTIC.reset(pool_size=int(async_arctic_pool_workers), timeout=10)
    measurements = []
    for curr_round in xrange(rounds):
        # print("Running round {}".format(curr_round))
        clean_lib()
        start = time.time()
        if use_async:
            async_bench(num_requests, num_chunks)
        else:
            serial_bench(num_requests, num_chunks)
        measurements.append(time.time() - start)
    print("{}: async={}, chunks/write={}, writes/round={}, rounds={}, "
          "parallel_lz4={}, async_arctic_pool_workers={}: {}".format(
        result_text, use_async, num_chunks, num_requests, rounds, parallel_lz4, async_arctic_pool_workers,
        ["{:.3f}".format(x) for x in get_stats(measurements[1:] if len(measurements) > 1 else measurements)])) 
開發者ID:man-group,項目名稱:arctic,代碼行數:21,代碼來源:async_benchmark.py

示例5: train

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def train(self, dataset):
        log.infov("Training Starts!")
        pprint(self.batch_train)

        max_steps = 2500000

        output_save_step = 1000

        for s in xrange(max_steps):
            step, summary, loss, loss_pair, loss_unpair, step_time = \
                self.run_single_step(self.batch_train, dataset, step=s, is_train=True)

            if s % 10 == 0:
                self.log_step_message(step, loss, loss_pair, loss_unpair, step_time)
                self.summary_writer.add_summary(summary, global_step=step)

            if s % output_save_step == 0:
                log.infov("Saved checkpoint at %d", s)
                save_path = self.saver.save(self.session,
                                            os.path.join(self.train_dir, 'model'),
                                            global_step=step) 
開發者ID:clvrai,項目名稱:Representation-Learning-by-Learning-to-Count,代碼行數:23,代碼來源:trainer.py

示例6: sparse_tuple_from

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def sparse_tuple_from(sequences, dtype=np.int32):
    """Create a sparse representention of x.
    Args:
        sequences: a list of lists of type dtype where each element is a sequence
    Returns:
        A tuple with (indices, values, shape)
    """
    indices = []
    values = []

    for n, seq in enumerate(sequences):
        indices.extend(zip([n]*len(seq), range(len(seq))))
        values.extend(seq)

    indices = np.asarray(indices, dtype=np.int64)
    values = np.asarray(values, dtype=dtype)
    shape = np.asarray([len(sequences), np.asarray(indices).max(0)[1]+1], dtype=np.int64)

    return indices, values, shape 
開發者ID:igormq,項目名稱:ctc_tensorflow_example,代碼行數:21,代碼來源:utils.py

示例7: _step_and_skip

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def _step_and_skip(self, actions):
        # TODO - allow for goal reward substitution for multi-goal envs
        if self.frameskip is None:
            # Frames kipping is unset or set as env property.
            return self.gym_env.step(actions)
        else:
            # Do frameskip loop in our wrapper class.
            step_reward = 0.0
            terminal = None
            info = None
            for i in range_(self.frameskip):
                state, reward, terminal, info = self.gym_env.step(actions)
                if i == self.frameskip - 2:
                    self.state_buffer[0] = state
                if i == self.frameskip - 1:
                    self.state_buffer[1] = state
                step_reward += reward
                if terminal:
                    break

            max_frame = self.state_buffer.max(axis=0)

            return max_frame, step_reward, terminal, info 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:25,代碼來源:openai_gym.py

示例8: render_txt

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def render_txt(self):
        actor = "X"
        if self.action_type == "ftj":
            actor = "^" if self.orientation == 0 else ">" if self.orientation == 90 else "v" if \
                self.orientation == 180 else "<"

        # paints itself
        txt = ""
        for row in range_(len(self.world)):
            for col, val in enumerate(self.world[row]):
                if self.x == col and self.y == row:
                    txt += actor
                else:
                    txt += val
            txt += "\n"
        txt += "\n"
        return txt 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:19,代碼來源:grid_world.py

示例9: update_cam_pixels

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def update_cam_pixels(self):
        # Init camera?
        if self.camera_pixels is None:
            self.camera_pixels = np.zeros(shape=(self.n_row, self.n_col, 3), dtype=np.int32)
        self.camera_pixels[:, :, :] = 0  # reset everything

        # 1st channel -> Walls (127) and goal (255).
        # 2nd channel -> Dangers (fire=127, holes=255)
        # 3rd channel -> Actor position (255).
        for row in range_(self.n_row):
            for col in range_(self.n_col):
                field = self.world[row, col]
                if field == "F":
                    self.camera_pixels[row, col, 0] = 127
                elif field == "H":
                    self.camera_pixels[row, col, 0] = 255
                elif field == "W":
                    self.camera_pixels[row, col, 1] = 127
                elif field == "G":
                    self.camera_pixels[row, col, 1] = 255  # will this work (goal==2x wall)?
        # Overwrite player's position.
        self.camera_pixels[self.y, self.x, 2] = 255 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:24,代碼來源:grid_world.py

示例10: test_complex_space_sampling_and_check_via_contains

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def test_complex_space_sampling_and_check_via_contains(self):
        """
        Tests a complex Space on sampling and `contains` functionality.
        """
        space = Dict(
            a=dict(aa=float, ab=bool),
            b=dict(ba=float),
            c=float,
            d=IntBox(low=0, high=1),
            e=IntBox(5),
            f=FloatBox(shape=(2, 2)),
            g=Tuple(float, FloatBox(shape=())),
            add_batch_rank=True
        )

        samples = space.sample(size=100, horizontal=True)
        for i in range_(len(samples)):
            self.assertTrue(space.contains(samples[i])) 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:20,代碼來源:test_spaces.py

示例11: _apply_gradients

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def _apply_gradients(self, grads, x, optim_state):
        new_x = [None] * len(x)
        for i in xrange(len(x)):
            new_x[i] = x[i] - self._lr * grads[i]
        return new_x, optim_state 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:7,代碼來源:attacks_tf.py

示例12: random_targets

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def random_targets(gt, nb_classes):
    """
    Take in an array of correct labels and randomly select a different label
    for each label in the array. This is typically used to randomly select a
    target class in targeted adversarial examples attacks (i.e., when the
    search algorithm takes in both a source class and target class to compute
    the adversarial example).
    :param gt: the ground truth (correct) labels. They can be provided as a
               1D vector or 2D array of one-hot encoded labels.
    :param nb_classes: The number of classes for this task. The random class
                       will be chosen between 0 and nb_classes such that it
                       is different from the correct class.
    :return: A numpy array holding the randomly-selected target classes
             encoded as one-hot labels.
    """
    # If the ground truth labels are encoded as one-hot, convert to labels.
    if len(gt.shape) == 2:
        gt = np.argmax(gt, axis=1)

    # This vector will hold the randomly selected labels.
    result = np.zeros(gt.shape, dtype=np.int32)

    for class_ind in xrange(nb_classes):
        # Compute all indices in that class.
        in_cl = gt == class_ind
        size = np.sum(in_cl)

        # Compute the set of potential targets for this class.
        potential_targets = other_classes(nb_classes, class_ind)

        # Draw with replacement random targets among the potential targets.
        result[in_cl] = np.random.choice(potential_targets, size=size)

    # Encode vector of random labels as one-hot labels.
    result = to_categorical(result, nb_classes)
    result = result.astype(np.int32)

    return result 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:40,代碼來源:utils.py

示例13: grid_visual

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def grid_visual(data):
    """
    This function displays a grid of images to show full misclassification
    :param data: grid data of the form;
        [nb_classes : nb_classes : img_rows : img_cols : nb_channels]
    :return: if necessary, the matplot figure to reuse
    """
    import matplotlib.pyplot as plt

    # Ensure interactive mode is disabled and initialize our graph
    plt.ioff()
    figure = plt.figure()
    figure.canvas.set_window_title('Cleverhans: Grid Visualization')

    # Add the images to the plot
    num_cols = data.shape[0]
    num_rows = data.shape[1]
    num_channels = data.shape[4]
    current_row = 0
    for y in xrange(num_rows):
        for x in xrange(num_cols):
            figure.add_subplot(num_rows, num_cols, (x + 1) + (y * num_cols))
            plt.axis('off')

            if num_channels == 1:
                plt.imshow(data[x, y, :, :, 0], cmap='gray')
            else:
                plt.imshow(data[x, y, :, :, :])

    # Draw the plot and return
    plt.show()
    return figure 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:34,代碼來源:utils.py

示例14: clip_eta

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def clip_eta(eta, ord, eps):
    """
    Helper function to clip the perturbation to epsilon norm ball.
    :param eta: A tensor with the current perturbation.
    :param ord: Order of the norm (mimics Numpy).
                Possible values: np.inf, 1 or 2.
    :param eps: Epilson, bound of the perturbation.
    """

    # Clipping perturbation eta to self.ord norm ball
    if ord not in [np.inf, 1, 2]:
        raise ValueError('ord must be np.inf, 1, or 2.')
    reduc_ind = list(xrange(1, len(eta.get_shape())))
    avoid_zero_div = 1e-12
    if ord == np.inf:
        eta = tf.clip_by_value(eta, -eps, eps)
    else:
        if ord == 1:
            norm = tf.maximum(avoid_zero_div,
                              reduce_sum(tf.abs(eta),
                                         reduc_ind, keepdims=True))
        elif ord == 2:
            # avoid_zero_div must go inside sqrt to avoid a divide by zero
            # in the gradient through this operation
            norm = tf.sqrt(tf.maximum(avoid_zero_div,
                                      reduce_sum(tf.square(eta),
                                                 reduc_ind,
                                                 keepdims=True)))
        # We must *clip* to within the norm ball, not *normalize* onto the
        # surface of the ball
        factor = tf.minimum(1., eps / norm)
        eta = eta * factor
    return eta 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:35,代碼來源:utils_tf.py

示例15: _FillBucketInputQueue

# 需要導入模塊: from six import moves [as 別名]
# 或者: from six.moves import xrange [as 別名]
def _FillBucketInputQueue(self):
    """Fill bucketed batches into the bucket_input_queue."""
    while True:
      inputs = []
      for _ in xrange(self._hps.batch_size * BUCKET_CACHE_BATCH):
        inputs.append(self._input_queue.get())
      if self._bucketing:
        inputs = sorted(inputs, key=lambda inp: inp.enc_len)

      batches = []
      for i in xrange(0, len(inputs), self._hps.batch_size):
        batches.append(inputs[i:i+self._hps.batch_size])
      shuffle(batches)
      for b in batches:
        self._bucket_input_queue.put(b) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:17,代碼來源:batch_reader.py


注:本文中的six.moves.xrange方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。