本文整理匯總了Python中six.moves.cPickle.loads方法的典型用法代碼示例。如果您正苦於以下問題:Python cPickle.loads方法的具體用法?Python cPickle.loads怎麽用?Python cPickle.loads使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類six.moves.cPickle
的用法示例。
在下文中一共展示了cPickle.loads方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: predict
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def predict(self, data_root, model_root, test_root, test_div, out_path, readable=False):
meta_path = os.path.join(data_root, 'meta')
meta = cPickle.loads(open(meta_path, 'rb').read())
model_fname = os.path.join(model_root, 'model.h5')
self.logger.info('# of classes(train): %s' % len(meta['y_vocab']))
model = load_model(model_fname,
custom_objects={'top1_acc': top1_acc})
test_path = os.path.join(test_root, 'data.h5py')
test_data = h5py.File(test_path, 'r')
test = test_data[test_div]
batch_size = opt.batch_size
pred_y = []
test_gen = ThreadsafeIter(self.get_sample_generator(test, batch_size, raise_stop_event=True))
total_test_samples = test['uni'].shape[0]
with tqdm.tqdm(total=total_test_samples) as pbar:
for chunk in test_gen:
total_test_samples = test['uni'].shape[0]
X, _ = chunk
_pred_y = model.predict(X)
pred_y.extend([np.argmax(y) for y in _pred_y])
pbar.update(X[0].shape[0])
self.write_prediction_result(test, pred_y, meta, out_path, readable=readable)
示例2: load
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def load(fname):
"""Load an embedding dump generated by `save`"""
content = _open(fname).read()
if PY2:
state = pickle.loads(content)
else:
state = pickle.loads(content, encoding='latin1')
voc, vec = state
if len(voc) == 2:
words, counts = voc
word_count = dict(zip(words, counts))
vocab = CountedVocabulary(word_count=word_count)
else:
vocab = OrderedVocabulary(voc)
return Embedding(vocabulary=vocab, vectors=vec)
示例3: verify_tee
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def verify_tee(n, original, seed):
try:
state = random.getstate()
iterators = list(tee(original, n=n))
results = [[] for _ in range(n)]
exhausted = [False] * n
while not all(exhausted):
# Upper argument of random.randint is inclusive. Argh.
i = random.randint(0, n - 1)
if not exhausted[i]:
if len(results[i]) == len(original):
assert_raises(StopIteration, next, iterators[i])
assert results[i] == original
exhausted[i] = True
else:
if random.randint(0, 1):
iterators[i] = cPickle.loads(
cPickle.dumps(iterators[i]))
elem = next(iterators[i])
results[i].append(elem)
finally:
random.setstate(state)
示例4: test_xrange
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def test_xrange():
yield assert_equal, list(xrange(10)), list(_xrange(10))
yield assert_equal, list(xrange(10, 15)), list(_xrange(10, 15))
yield assert_equal, list(xrange(10, 20, 2)), list(_xrange(10, 20, 2))
yield assert_equal, list(xrange(5, 1, -1)), list(_xrange(5, 1, -1))
yield (assert_equal, list(xrange(5, 55, 3)),
list(cPickle.loads(cPickle.dumps(_xrange(5, 55, 3)))))
yield assert_equal, _xrange(5).index(4), 4
yield assert_equal, _xrange(5, 9).index(6), 1
yield assert_equal, _xrange(8, 24, 3).index(11), 1
yield assert_equal, _xrange(25, 4, -5).index(25), 0
yield assert_equal, _xrange(28, 7, -7).index(14), 2
yield assert_raises, ValueError, _xrange(2, 9, 2).index, 3
yield assert_raises, ValueError, _xrange(2, 20, 2).index, 9
yield assert_equal, _xrange(5).count(5), 0
yield assert_equal, _xrange(5).count(4), 1
yield assert_equal, _xrange(4, 9).count(4), 1
yield assert_equal, _xrange(3, 9, 2).count(4), 0
yield assert_equal, _xrange(3, 9, 2).count(5), 1
yield assert_equal, _xrange(3, 9, 2).count(20), 0
yield assert_equal, _xrange(9, 3).count(5), 0
yield assert_equal, _xrange(3, 10, -1).count(5), 0
yield assert_equal, _xrange(10, 3, -1).count(5), 1
yield assert_equal, _xrange(10, 0, -2).count(6), 1
yield assert_equal, _xrange(10, -1, -3).count(7), 1
示例5: minimize
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def minimize(self, model, data, max_evals, notebook_name=None):
global best_model_yaml, best_model_weights
trials_list = self.compute_trials(
model, data, max_evals, notebook_name)
best_val = 1e7
for trials in trials_list:
for trial in trials:
val = trial.get('result').get('loss')
if val < best_val:
best_val = val
best_model_yaml = trial.get('result').get('model')
best_model_weights = trial.get('result').get('weights')
best_model = model_from_yaml(best_model_yaml)
best_model.set_weights(pickle.loads(best_model_weights))
return best_model
示例6: best_models
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def best_models(self, nb_models, model, data, max_evals):
trials_list = self.compute_trials(model, data, max_evals)
num_trials = sum(len(trials) for trials in trials_list)
if num_trials < nb_models:
nb_models = len(trials_list)
scores = []
for trials in trials_list:
scores = scores + [trial.get('result').get('loss')
for trial in trials]
cut_off = sorted(scores, reverse=True)[nb_models - 1]
model_list = []
for trials in trials_list:
for trial in trials:
if trial.get('result').get('loss') >= cut_off:
model = model_from_yaml(trial.get('result').get('model'))
model.set_weights(pickle.loads(
trial.get('result').get('weights')))
model_list.append(model)
return model_list
示例7: test_pickling
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def test_pickling(self, backend_config):
x_data, = self.generate_inputs()
link = self.create_link(self.generate_params())
link.to_device(backend_config.device)
x = chainer.Variable(x_data)
x.to_device(backend_config.device)
y = link(x)
y_data1 = y.data
del x, y
pickled = pickle.dumps(link, -1)
del link
link = pickle.loads(pickled)
x = chainer.Variable(x_data)
x.to_device(backend_config.device)
y = link(x)
y_data2 = y.data
testing.assert_allclose(y_data1, y_data2, atol=0, rtol=0)
示例8: check_pickling
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def check_pickling(self, x_data):
x = chainer.Variable(x_data)
y = self.link(x)
y_data1 = y.data
del x, y
pickled = pickle.dumps(self.link, -1)
del self.link
self.link = pickle.loads(pickled)
x = chainer.Variable(x_data)
y = self.link(x)
y_data2 = y.data
testing.assert_allclose(y_data1, y_data2, atol=0, rtol=0)
示例9: test_pickling
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def test_pickling(self):
try:
features = numpy.arange(360, dtype='uint16').reshape((10, 36))
h5file = h5py.File('file.hdf5', mode='w')
h5file['features'] = features
split_dict = {'train': {'features': (0, 10, None, '.')}}
h5file.attrs['split'] = H5PYDataset.create_split_array(split_dict)
dataset = cPickle.loads(
cPickle.dumps(H5PYDataset(h5file, which_sets=('train',))))
# Make sure _out_of_memory_{open,close} accesses
# external_file_handle rather than _external_file_handle
dataset._out_of_memory_open()
dataset._out_of_memory_close()
assert dataset.data_sources is None
finally:
os.remove('file.hdf5')
示例10: get_project_settings
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def get_project_settings():
if ENVVAR not in os.environ:
project = os.environ.get('SCRAPY_PROJECT', 'default')
init_env(project)
settings = Settings()
settings_module_path = os.environ.get(ENVVAR)
if settings_module_path:
settings.setmodule(settings_module_path, priority='project')
# XXX: remove this hack
pickled_settings = os.environ.get("SCRAPY_PICKLED_SETTINGS_TO_OVERRIDE")
if pickled_settings:
settings.setdict(pickle.loads(pickled_settings), priority='project')
# XXX: deprecate and remove this functionality
env_overrides = {k[7:]: v for k, v in os.environ.items() if
k.startswith('SCRAPY_')}
if env_overrides:
settings.setdict(env_overrides, priority='project')
return settings
示例11: _read_data
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def _read_data(self, spider, request):
key = self._request_key(request)
try:
ts = self.db.Get(key + b'_time')
except KeyError:
return # not found or invalid entry
if 0 < self.expiration_secs < time() - float(ts):
return # expired
try:
data = self.db.Get(key + b'_data')
except KeyError:
return # invalid entry
else:
return pickle.loads(data)
示例12: execute_request
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def execute_request(self, request):
# noinspection PyBroadException
try:
# Use pickle to read the binary data.
data_object = pickle.loads(request)
except Exception: # pickle.loads is document as raising any type of exception, so have to catch them all.
self.__logger.warn(
"Could not parse incoming metric line from graphite pickle server, ignoring",
error_code="graphite_monitor/badUnpickle",
)
return
try:
# The format should be [[ metric [ timestamp, value]] ... ]
for (metric, datapoint) in data_object:
value = float(datapoint[1])
orig_timestamp = float(datapoint[0])
self.__logger.emit_value(
metric, value, extra_fields={"orig_time": orig_timestamp}
)
except ValueError:
self.__logger.warn(
"Could not parse incoming metric line from graphite pickle server, ignoring",
error_code="graphite_monitor/badPickleLine",
)
示例13: test_pickle_invoke
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def test_pickle_invoke():
data = pwny.pickle_invoke(func_to_invoke, 8)
assert cPickle.loads(data) == 8
示例14: test_pickle_func
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def test_pickle_func():
def func_to_invoke_2(a):
return a
data = pwny.pickle_func(func_to_invoke_2, 8)
del func_to_invoke_2
assert cPickle.loads(data) == 8
示例15: query
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import loads [as 別名]
def query(self, *args, **kwargs):
"""
Generic query method.
In reality, your storage class would have its own query methods,
Performs a Mongo find on the Marketdata index metadata collection.
See:
http://api.mongodb.org/python/current/api/pymongo/collection.html
"""
for x in self._collection.find(*args, **kwargs):
x['stuff'] = cPickle.loads(x['stuff'])
del x['_id'] # Remove default unique '_id' field from doc
yield Stuff(**x)