本文整理匯總了Python中six.moves.cPickle.load方法的典型用法代碼示例。如果您正苦於以下問題:Python cPickle.load方法的具體用法?Python cPickle.load怎麽用?Python cPickle.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類six.moves.cPickle
的用法示例。
在下文中一共展示了cPickle.load方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_read_backward_compatibility
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def test_read_backward_compatibility():
"""Test backwards compatibility with a pickled file that's created with Python 2.7.3,
Numpy 1.7.1_ahl2 and Pandas 0.14.1
"""
fname = path.join(path.dirname(__file__), "data", "test-data.pkl")
# For newer versions; verify that unpickling fails when using cPickle
if PANDAS_VERSION >= LooseVersion("0.16.1"):
if sys.version_info[0] >= 3:
with pytest.raises(UnicodeDecodeError), open(fname) as fh:
cPickle.load(fh)
else:
with pytest.raises(TypeError), open(fname) as fh:
cPickle.load(fh)
# Verify that PickleStore() uses a backwards compatible unpickler.
store = PickleStore()
with open(fname) as fh:
# PickleStore compresses data with lz4
version = {'blob': compressHC(fh.read())}
df = store.read(sentinel.arctic_lib, version, sentinel.symbol)
expected = pd.DataFrame(range(4), pd.date_range(start="20150101", periods=4))
assert (df == expected).all().all()
示例2: load_data
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def load_data(self, FLAGS):
self.FLAGS = FLAGS
with open(settings.CATES) as f:
cates = json.load(f)
text2cate = {c['text']: c['cate_id'] for c in cates}
self.num_samples = 0
self.labels = [[] for i in range(self.num_classes)]
with open(FLAGS.dataset_dir, 'rb') as f:
all = cPickle.load(f)
for image, text in all:
label = text2cate.get(text)
assert label is not None
if label is None or label >= settings.NUM_CHAR_CATES:
self.labels[settings.NUM_CHAR_CATES].append(image)
else: # label < settings.NUM_CHAR_CATES:
self.labels[label].append(image)
self.num_samples += 1
for label in self.labels:
assert 0 < len(label)
# self.preview()
示例3: test_function_dump
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def test_function_dump():
v = theano.tensor.vector()
fct1 = theano.function([v], v + 1)
try:
tmpdir = tempfile.mkdtemp()
fname = os.path.join(tmpdir, 'test_function_dump.pkl')
theano.function_dump(fname, [v], v + 1)
with open(fname, 'rb') as f:
l = pickle.load(f)
finally:
if tmpdir is not None:
shutil.rmtree(tmpdir)
fct2 = theano.function(**l)
x = [1, 2, 3]
assert numpy.allclose(fct1(x), fct2(x))
示例4: sample
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def sample(args):
with open(os.path.join(args.save_dir, 'config.pkl'), 'rb') as f:
saved_args = cPickle.load(f)
with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'rb') as f:
chars, vocab = cPickle.load(f)
#Use most frequent char if no prime is given
if args.prime == '':
args.prime = chars[0]
model = Model(saved_args, training=False)
with tf.Session() as sess:
tf.global_variables_initializer().run()
saver = tf.train.Saver(tf.global_variables())
ckpt = tf.train.get_checkpoint_state(args.save_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
data = model.sample(sess, chars, vocab, args.n, args.prime,
args.sample).encode('utf-8')
print(data.decode("utf-8"))
示例5: read_dataset
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def read_dataset(data_dir):
pickle_filename = "lamem.pickle"
pickle_filepath = os.path.join(data_dir, pickle_filename)
if not os.path.exists(pickle_filepath):
utils.maybe_download_and_extract(data_dir, DATA_URL, is_tarfile=True)
lamem_folder = (DATA_URL.split("/")[-1]).split(os.path.extsep)[0]
result = {'images': create_image_lists(os.path.join(data_dir, lamem_folder))}
print ("Pickling ...")
with open(pickle_filepath, 'wb') as f:
pickle.dump(result, f, pickle.HIGHEST_PROTOCOL)
else:
print ("Found pickle file!")
with open(pickle_filepath, 'rb') as f:
result = pickle.load(f)
training_records = result['images']
del result
return training_records
示例6: _load_image_set_index
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def _load_image_set_index(self, ext='json'):
"""
Load the indexes listed in this dataset's image set file.
"""
if cfg.LIMIT_RAM:
if ext == 'json':
path = pjoin(cfg.SPLIT_DIR, 'densecap_splits.json')
with open(path, 'r') as f:
# NOTE: the return index has entries with INT type
image_index = json.load(f)[self._image_set]
print ("loading splits from {}".format(path))
elif ext == 'txt':
path = pjoin(cfg.SPLIT_DIR, '%s.txt' % self._image_set)
with open(path, 'r') as f:
image_index = [line.strip() for line in f.readlines()]
print ("loading splits from {}".format(path))
else:
image_index = [key for key in self._gt_regions]
print("Number of examples: {}".format(len(image_index)))
return image_index
示例7: from_snapshot
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def from_snapshot(self, sess, sfile, nfile):
print('Restoring model snapshots from {:s}'.format(sfile))
self.saver.restore(sess, sfile)
print('Restored.')
# Needs to restore the other hyper-parameters/states for training, (TODO xinlei) I have
# tried my best to find the random states so that it can be recovered exactly
# However the Tensorflow state is currently not available
with open(nfile, 'rb') as fid:
st0 = pickle.load(fid)
cur = pickle.load(fid)
perm = pickle.load(fid)
cur_val = pickle.load(fid)
perm_val = pickle.load(fid)
last_snapshot_iter = pickle.load(fid)
np.random.set_state(st0)
self.data_layer._cur = cur
self.data_layer._perm = perm
self.data_layer_val._cur = cur_val
self.data_layer_val._perm = perm_val
return last_snapshot_iter
示例8: read_data_files
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def read_data_files(self, subset='train'):
"""Reads from data file and returns images and labels in a numpy array."""
assert self.data_dir, ('Cannot call `read_data_files` when using synthetic '
'data')
if subset == 'train':
filenames = [os.path.join(self.data_dir, 'data_batch_%d' % i)
for i in xrange(1, 6)]
elif subset == 'validation':
filenames = [os.path.join(self.data_dir, 'test_batch')]
else:
raise ValueError('Invalid data subset "%s"' % subset)
inputs = []
for filename in filenames:
with gfile.Open(filename, 'r') as f:
inputs.append(cPickle.load(f))
# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
# input format.
all_images = np.concatenate(
[each_input['data'] for each_input in inputs]).astype(np.float32)
all_labels = np.concatenate(
[each_input['labels'] for each_input in inputs])
return all_images, all_labels
示例9: load_embeddings
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def load_embeddings(lang="en", task="embeddings", type="cw", normalize=False):
"""Return a word embeddings object for `lang` and of type `type`
Args:
lang (string): language code.
task (string): parameters that define task.
type (string): skipgram, cw, cbow ...
noramlized (boolean): returns noramlized word embeddings vectors.
"""
src_dir = "_".join((type, task)) if type else task
p = locate_resource(src_dir, lang)
e = Embedding.load(p)
if type == "cw":
e.apply_expansion(CaseExpander)
e.apply_expansion(DigitExpander)
if type == "sgns":
e.apply_expansion(CaseExpander)
if type == "ue":
e.apply_expansion(CaseExpander)
if normalize:
e.normalize_words(inplace=True)
return e
示例10: _init_suffixes
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def _init_suffixes(self, filename):
filename = path.join(self.data_dirname, filename)
with open(filename, 'rb') as f:
return pickle.load(f)
示例11: load
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def load(self, filename):
"""Load counters to file"""
try:
with open(filename, 'rb') as fp:
self.counters = cPickle.load(fp)
except:
logging.debug("can't load counter from file: %s", filename)
return False
return True
示例12: load_cifar_batch
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def load_cifar_batch(fpath, label_key='labels'):
"""Internal utility for parsing CIFAR data.
# Arguments
fpath: path the file to parse.
label_key: key for label data in the retrieve
dictionary.
# Returns
A tuple `(data, labels)`.
"""
f = utils.o_gfile(fpath, 'rb')
if sys.version_info < (3,):
d = cPickle.load(f)
else:
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
f.close()
data = d['data']
labels = d[label_key]
data = data.reshape(data.shape[0], 3, 32, 32)
return data, labels
示例13: _load_dsprites
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def _load_dsprites(self, opts):
"""Load data from dsprites dataset
"""
logging.debug('Loading dsprites')
data_dir = _data_dir(opts)
# pylint: disable=invalid-name
# Let us use all the bad variable names!
tr_X = None
tr_Y = None
te_X = None
te_Y = None
data_file = os.path.join(data_dir, 'dsprites.npz')
X = np.load(data_file)['imgs']
X = X[:, :, :, None]
seed = 123
np.random.seed(seed)
np.random.shuffle(X)
np.random.seed()
self.data_shape = (64, 64, 1)
test_size = 10000
self.data = Data(opts, X[:-test_size])
self.test_data = Data(opts, X[-test_size:])
self.num_points = len(self.data)
logging.debug('Loading Done.')
示例14: loadobject
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def loadobject(path):
with open(path, 'rb') as input:
obj = pickle.load(input)
return obj
示例15: __init__
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import load [as 別名]
def __init__(self, cache_filename):
if os.path.exists(cache_filename):
with open(cache_filename, 'rb') as f:
self.old2new, self.new2old = cPickle.load(f)
else:
self.old2new, self.new2old = FilenameMapper.create_filename_map(cache_filename)