本文整理匯總了Python中six.moves.cPickle.dump方法的典型用法代碼示例。如果您正苦於以下問題:Python cPickle.dump方法的具體用法?Python cPickle.dump怎麽用?Python cPickle.dump使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類six.moves.cPickle
的用法示例。
在下文中一共展示了cPickle.dump方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_pkl
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def create_pkl():
with open(settings.TEST_CLASSIFICATION) as f:
lines = f.read().splitlines()
with open(settings.TEST_CLASSIFICATION_GT) as f:
gt_lines = f.read().splitlines()
assert len(lines) == len(gt_lines)
test = []
for i, line in enumerate(lines):
anno = json.loads(line.strip())
gt_anno = json.loads(gt_lines[i].strip())
image = misc.imread(os.path.join(settings.TEST_IMAGE_DIR, anno['file_name']))
assert image.shape == (anno['height'], anno['width'], 3)
assert len(anno['proposals']) == len(gt_anno['ground_truth'])
for proposal, gt in zip(anno['proposals'], gt_anno['ground_truth']):
cropped = crop(image, proposal['adjusted_bbox'], 32)
test.append([cropped, gt])
if i % 100 == 0:
print('test', i, '/', len(lines))
with open(settings.TEST_CLS_CROPPED, 'wb') as f:
cPickle.dump(test, f)
示例2: build_y_vocab
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def build_y_vocab(self):
pool = Pool(opt.num_workers)
try:
rets = pool.map_async(build_y_vocab,
[(data_path, 'train')
for data_path in opt.train_data_list]).get(99999999)
pool.close()
pool.join()
y_vocab = set()
for _y_vocab in rets:
for k in six.iterkeys(_y_vocab):
y_vocab.add(k)
self.y_vocab = {y: idx for idx, y in enumerate(y_vocab)}
except KeyboardInterrupt:
pool.terminate()
pool.join()
raise
self.logger.info('size of y vocab: %s' % len(self.y_vocab))
cPickle.dump(self.y_vocab, open(self.y_vocab_path, 'wb'), 2)
示例3: save_pkl
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def save_pkl(self):
"""
Dump this object into its `key_pkl` file.
May raise a cPickle.PicklingError if such an exception is raised at
pickle time (in which case a warning is also displayed).
"""
# Note that writing in binary mode is important under Windows.
try:
with open(self.key_pkl, 'wb') as f:
pickle.dump(self, f, protocol=pickle.HIGHEST_PROTOCOL)
except pickle.PicklingError:
_logger.warning("Cache leak due to unpickle-able key data %s",
self.keys)
os.remove(self.key_pkl)
raise
示例4: read_dataset
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def read_dataset(data_dir):
pickle_filename = "lamem.pickle"
pickle_filepath = os.path.join(data_dir, pickle_filename)
if not os.path.exists(pickle_filepath):
utils.maybe_download_and_extract(data_dir, DATA_URL, is_tarfile=True)
lamem_folder = (DATA_URL.split("/")[-1]).split(os.path.extsep)[0]
result = {'images': create_image_lists(os.path.join(data_dir, lamem_folder))}
print ("Pickling ...")
with open(pickle_filepath, 'wb') as f:
pickle.dump(result, f, pickle.HIGHEST_PROTOCOL)
else:
print ("Found pickle file!")
with open(pickle_filepath, 'rb') as f:
result = pickle.load(f)
training_records = result['images']
del result
return training_records
示例5: load
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def load(fname):
"""Load an embedding dump generated by `save`"""
content = _open(fname).read()
if PY2:
state = pickle.loads(content)
else:
state = pickle.loads(content, encoding='latin1')
voc, vec = state
if len(voc) == 2:
words, counts = voc
word_count = dict(zip(words, counts))
vocab = CountedVocabulary(word_count=word_count)
else:
vocab = OrderedVocabulary(voc)
return Embedding(vocabulary=vocab, vectors=vec)
示例6: generate_label
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def generate_label(cls_dir, labels):
total_list = []
cnt = 0
for label in labels:
for name in os.listdir(os.path.join(DATA_DIR, cls_dir, label)):
record = {'name': name, 'label': cnt, 'subdir': label}
total_list.append(record)
cnt += 1
random.shuffle(total_list)
train_size = int(0.7 * len(total_list))
print(train_size, len(total_list))
with open(os.path.join(DATA_DIR, cls_dir, 'train.pickle'), 'wb') as f:
pickle.dump(total_list[:train_size], f, 2)
with open(os.path.join(DATA_DIR, cls_dir, 'val.pickle'), 'wb') as f:
pickle.dump(total_list[train_size:], f, 2)
示例7: maybe_pickle
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def maybe_pickle(data_folders, min_num_images_per_class, force=False):
dataset_names = []
for folder in data_folders:
set_filename = folder + '.pickle'
dataset_names.append(set_filename)
if os.path.exists(set_filename) and not force:
# You may override by setting force=True.
print('%s already present - Skipping pickling.' % set_filename)
else:
print('Pickling %s.' % set_filename)
dataset = load_letter(folder, min_num_images_per_class)
try:
with open(set_filename, 'wb') as f:
pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)
except Exception as e:
print('Unable to save data to', set_filename, ':', e)
return dataset_names
開發者ID:PacktPublishing,項目名稱:Neural-Network-Programming-with-TensorFlow,代碼行數:20,代碼來源:1_prepare_pickle_200.py
示例8: maybe_pickle
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def maybe_pickle(data_folders, min_num_images_per_class, force=False):
dataset_names = []
for folder in data_folders:
set_filename = folder + '.pickle'
dataset_names.append(set_filename)
if os.path.exists(set_filename) and not force:
print('%s already present - Skipping pickling.' % set_filename)
else:
print('Pickling %s.' % set_filename)
dataset = load_letter(folder, min_num_images_per_class)
try:
with open(set_filename, 'wb') as f:
#pickle.dump(dataset, f, pickle.HIGHEST_PROTOCOL)
print(pickle.HIGHEST_PROTOCOL)
pickle.dump(dataset, f, 2)
except Exception as e:
print('Unable to save data to', set_filename, ':', e)
return dataset_names
開發者ID:PacktPublishing,項目名稱:Neural-Network-Programming-with-TensorFlow,代碼行數:21,代碼來源:prepare_notmnist.py
示例9: main
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def main(params):
info = json.load(open(params['dict_json'], 'r'))
imgs = json.load(open(params['input_json'], 'r'))
itow = info['ix_to_word']
wtoi = {w:i for i,w in itow.items()}
wtod = {w:i+1 for w,i in info['wtod'].items()} # word to detection
# dtoi = {w:i+1 for i,w in enumerate(wtod.keys())} # detection to index
dtoi = wtod
wtol = info['wtol']
itod = {i:w for w,i in dtoi.items()}
# imgs = imgs['images']
ngram_idxs, ref_len = build_dict(imgs, info, wtoi, wtod, dtoi, wtol, itod, params)
# cPickle.dump({'document_frequency': ngram_words, 'ref_len': ref_len}, open(params['output_pkl']+'-words.p','w'), protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump({'document_frequency': ngram_idxs, 'ref_len': ref_len}, open(params['output_pkl']+'-idxs.p','w'), protocol=cPickle.HIGHEST_PROTOCOL)
示例10: main
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def main(params):
det_train_path = 'data/coco/annotations/instances_train2014.json'
det_val_path = 'data/coco/annotations/instances_val2014.json'
coco_det_train = COCO(det_train_path)
coco_det_val = COCO(det_val_path)
info = json.load(open(params['dict_json'], 'r'))
imgs = json.load(open(params['input_json'], 'r'))
itow = info['ix_to_word']
wtoi = {w:i for i,w in itow.items()}
wtod = {w:i+1 for w,i in info['wtod'].items()} # word to detection
dtoi = {w:i+1 for i,w in enumerate(wtod.keys())} # detection to index
wtol = info['wtol']
ctol = {c:i+1 for i, c in enumerate(coco_det_train.cats.keys())}
# imgs = imgs['images']
ngram_idxs, ref_len = build_dict(imgs, info, wtoi, wtod, dtoi, wtol, ctol, coco_det_train, coco_det_val, params)
# cPickle.dump({'document_frequency': ngram_words, 'ref_len': ref_len}, open(params['output_pkl']+'-words.p','w'), protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump({'document_frequency': ngram_idxs, 'ref_len': ref_len}, open(params['output_pkl']+'-idxs.p','w'), protocol=cPickle.HIGHEST_PROTOCOL)
示例11: recursive_pickle
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def recursive_pickle(top_obj):
"""
Recursively pickle all of the given objects subordinates, starting with
the deepest first. **Very** handy for debugging pickling issues, but
also very slow (as it literally pickles each object in turn).
Handles circular object references gracefully.
"""
objs = depth_getter(top_obj)
# sort by depth then by nest_info
objs = sorted(six.itervalues(objs), key=lambda val: (-val[0], val[2]))
for _, obj, location in objs:
# print('trying %s' % location)
try:
pickle.dump(obj, BytesIO(), pickle.HIGHEST_PROTOCOL)
except Exception as err:
print(obj)
print('Failed to pickle %s. \n Type: %s. Traceback '
'follows:' % (location, type(obj)))
raise
示例12: save_dataset
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def save_dataset(self, filename):
"""使用pickle保存數據文件。
數據文件包含詞典和對話樣本。
Args:
filename (str): pickle 文件名
"""
with open(filename, 'wb') as handle:
data = {
'trainingSamples': self.trainingSamples
}
if len(self.validationSamples)>0:
data['validationSamples'] = self.validationSamples
data['testingSamples'] = self.testingSamples
data['maxSeqLen'] = self.seq_max_length
cPickle.dump(data, handle, -1) # Using the highest protocol available
# 3. utility 函數,使用pickle讀文件
示例13: preprocess
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def preprocess(self, input_file, vocab_file, tensor_file):
def handle(line):
if len(line) > MAX_LENGTH:
index_end = line.rfind('。', 0, MAX_LENGTH)
index_end = index_end if index_end > 0 else MAX_LENGTH
line = line[:index_end + 1]
return BEGIN_CHAR + line + END_CHAR
self.texts = [line.strip().replace('\n', '') for line in
open(input_file, encoding='utf-8')]
self.texts = [handle(line) for line in self.texts if len(line) > MIN_LENGTH]
words = ['*', ' ']
for text in self.texts:
words += [word for word in text]
self.words = list(set(words))
self.words_size = len(self.words)
self.vocab = dict(zip(self.words, range(len(self.words))))
self.vocab_id = dict(zip(range(len(self.words)), self.words))
with open(vocab_file, 'wb') as f:
cPickle.dump(self.words, f)
self.texts_vector = np.array([
list(map(self.vocab.get, poetry)) for poetry in self.texts])
np.save(tensor_file, self.texts_vector)
示例14: store_response
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def store_response(self, spider, request, response):
"""Store the given response in the cache."""
rpath = self._get_request_path(spider, request)
if not os.path.exists(rpath):
os.makedirs(rpath)
metadata = {
'url': request.url,
'method': request.method,
'status': response.status,
'response_url': response.url,
'timestamp': time(),
}
with self._open(os.path.join(rpath, 'meta'), 'wb') as f:
f.write(to_bytes(repr(metadata)))
with self._open(os.path.join(rpath, 'pickled_meta'), 'wb') as f:
pickle.dump(metadata, f, protocol=2)
with self._open(os.path.join(rpath, 'response_headers'), 'wb') as f:
f.write(headers_dict_to_raw(response.headers))
with self._open(os.path.join(rpath, 'response_body'), 'wb') as f:
f.write(response.body)
with self._open(os.path.join(rpath, 'request_headers'), 'wb') as f:
f.write(headers_dict_to_raw(request.headers))
with self._open(os.path.join(rpath, 'request_body'), 'wb') as f:
f.write(request.body)
示例15: test
# 需要導入模塊: from six.moves import cPickle [as 別名]
# 或者: from six.moves.cPickle import dump [as 別名]
def test(args):
test_set = Dataset.from_bin_file(args.test_file)
assert args.load_model
print('load model from [%s]' % args.load_model, file=sys.stderr)
params = torch.load(args.load_model, map_location=lambda storage, loc: storage)
transition_system = params['transition_system']
saved_args = params['args']
saved_args.cuda = args.cuda
# set the correct domain from saved arg
args.lang = saved_args.lang
parser_cls = Registrable.by_name(args.parser)
parser = parser_cls.load(model_path=args.load_model, cuda=args.cuda)
parser.eval()
evaluator = Registrable.by_name(args.evaluator)(transition_system, args=args)
eval_results, decode_results = evaluation.evaluate(test_set.examples, parser, evaluator, args,
verbose=args.verbose, return_decode_result=True)
print(eval_results, file=sys.stderr)
if args.save_decode_to:
pickle.dump(decode_results, open(args.save_decode_to, 'wb'))