本文整理匯總了Python中simpy.Environment方法的典型用法代碼示例。如果您正苦於以下問題:Python simpy.Environment方法的具體用法?Python simpy.Environment怎麽用?Python simpy.Environment使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類simpy
的用法示例。
在下文中一共展示了simpy.Environment方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_store_sim
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def test_store_sim(benchmark):
def producer(env, store, n):
for i in range(n):
yield env.timeout(1)
yield store.put(i)
def consumer(env, store):
while True:
yield store.get()
yield env.timeout(2)
def sim():
env = simpy.Environment()
store = simpy.Store(env, capacity=5)
for _ in range(2):
env.process(producer(env, store, 10))
for _ in range(3):
env.process(consumer(env, store))
env.run()
return next(env._eid)
num_events = benchmark(sim)
assert num_events == 87
示例2: test_resource_sim
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def test_resource_sim(benchmark):
def worker(env, resource):
while True:
with resource.request() as req:
yield req
yield env.timeout(1)
def sim():
env = simpy.Environment()
resource = simpy.Resource(env, capacity=2)
for _ in range(5):
env.process(worker(env, resource))
env.run(until=15)
return next(env._eid)
num_events = benchmark(sim)
assert num_events == 94
示例3: test_container_sim
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def test_container_sim(benchmark):
def producer(env, container, full_event):
while True:
yield container.put(1)
if container.level == container.capacity:
full_event.succeed()
yield env.timeout(1)
def consumer(env, container):
while True:
yield container.get(1)
yield env.timeout(3)
def sim():
env = simpy.Environment()
container = simpy.Container(env, capacity=10)
full_event = env.event()
env.process(producer(env, container, full_event))
for _ in range(2):
env.process(consumer(env, container))
env.run(until=full_event)
return next(env._eid)
num_events = benchmark(sim)
assert num_events == 104
示例4: __runGUI__
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def __runGUI__(self):
"""
Simulation run using GUI for environment.
"""
self.__root = tk.Tk()
self.__root.wm_title("Environment")
# Create the queue
self.__queue = queue.Queue( )
# Set up the GUI part
self.__environmentGUI = GuiPart(self.__env, self.__root, self.__queue, self.__endGui__)
# Set up the thread to do asynchronous I/O -- taken from Python cookbook
self.__running = True
self.__thread1 = threading.Thread(target=self.__workerThread1__)
self.__thread1.start( )
# Start the periodic call in the GUI to check if the queue contains
# anything
self.__periodicCall__( )
self.__root.mainloop( )
self.__running = False
示例5: __init__
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def __init__(self,
sim_duration: int,
initial_time: int,
config_file: str,
measured_latency: str,
measured_throughput_received: str,
measured_throughput_sent: str,
measured_delays: str):
self._measured_delays = self._read_json_file(measured_delays)
self._sim_duration = sim_duration
self._initial_time = initial_time
self._config = self._read_json_file(config_file)
self._measured_latency = measured_latency
self._measured_throughput_received = measured_throughput_received
self._measured_throughput_sent = measured_throughput_sent
# Set the SimPy Environment
self._env = simpy.Environment(initial_time=self._initial_time)
self._set_configs()
self._set_delays()
self._set_latencies()
self._set_throughputs()
# Set the monitor
end_simulation = self._initial_time + self._sim_duration
self._env.data = {
'start_simulation_time': datetime.utcfromtimestamp(
self._initial_time).strftime('%m-%d %H:%M:%S'),
'end_simulation_time': datetime.utcfromtimestamp(end_simulation).strftime('%m-%d %H:%M:%S'),
'created_transactions': 0,
'tx_propagation': {},
'block_propagation': {}
}
示例6: env
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def env():
return simpy.Environment()
示例7: env
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def env():
"""Fixture providing simpy.Environment for tests with `env` argument."""
return simpy.Environment()
示例8: __init__
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def __init__(self, machine_configs, task_configs, algorithm, event_file):
self.env = simpy.Environment()
cluster = Cluster()
cluster.add_machines(machine_configs)
task_broker = Episode.broker_cls(self.env, task_configs)
scheduler = Scheduler(self.env, algorithm)
self.simulation = Simulation(self.env, cluster, task_broker, scheduler, event_file)
示例9: __init__
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def __init__(self, machine_configs, task_configs, algorithm, event_file):
self.env = simpy.Environment()
cluster = Cluster()
cluster.add_machines(machine_configs)
task_broker = Broker(self.env, task_configs)
scheduler = Scheduler(self.env, algorithm)
self.simulation = Simulation(self.env, cluster, task_broker, scheduler, event_file)
示例10: simulate_network
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def simulate_network(seedinit, num_nodes, network, initial_inv, ROP,
base_stock, demand, lead_time, lead_time_delay):
env = simpy.Environment() # initialize SimPy simulation instance
np.random.seed(seedinit)
nodes = [] # list of the objects of the storage facility class
for i in range(num_nodes):
if i == 0: # then it is the first supply node, which is assumed to have infinite inventory
s = stocking_facility(env, i, 1, initial_inv[i], ROP[i], base_stock[i],
None, np.zeros(100), lead_time[i], lead_time_delay)
else:
# first find the upstream facility before invoking the processes
for j in range(num_nodes):
if network[j][i] == 1: # then j serves i
s = stocking_facility(env, i, 0, initial_inv[i], ROP[i], base_stock[i],
nodes[j], demand[:, i - 1], lead_time[i], lead_time_delay)
break
nodes.append(s)
env.run(until=360)
# find the service level of each node
for i in range(num_nodes):
nodes[i].serviceLevel = 1 - nodes[i].totalLateSales / (nodes[i].totalDemand + 1.0e-5)
# find the average on-hand inventory of each node
for i in range(num_nodes):
if i == 0: # then it is the first supply node, which is assumed to have infinite inventory
nodes[i].avgOnHand = 0.0
else:
nodes[i].avgOnHand = np.mean(nodes[i].onHandMon)
return nodes # return the storageNode objects
示例11: simulate_network
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def simulate_network(seedinit, num_nodes, network, initial_inv, ROP,
base_stock, demand, lead_time, lead_time_delay):
env = simpy.Environment() # initialize SimPy simulation instance
np.random.seed(seedinit)
nodes = [] # list of the objects of the storage facility class
for i in range(num_nodes):
if i == 0: # then it is the first supply node, which is assumed to have infinite inventory
s = stocking_facility(env, i, 1, initial_inv[i], ROP[i], base_stock[i],
None, np.zeros(100), lead_time[i], lead_time_delay)
else:
# first find the upstream facility before invoking the processes
for j in range(num_nodes):
if network[j][i] == 1: # then j serves i
s = stocking_facility(env, i, 0, initial_inv[i], ROP[i], base_stock[i],
nodes[j], demand[:, i - 1], lead_time[i], lead_time_delay)
break
nodes.append(s)
env.run(until=360)
# find the service level of each node
for i in range(num_nodes):
nodes[i].serviceLevel = nodes[i].totalShipped / (nodes[i].totalDemand + 1.0e-5)
# find the average on-hand inventory of each node
for i in range(num_nodes):
if i == 0: # then it is the first supply node, which is assumed to have infinite inventory
nodes[i].avgOnHand = 0.0
else:
nodes[i].avgOnHand = np.mean(nodes[i].onHandMon)
return nodes # return the storageNode objects
示例12: __init__
# 需要導入模塊: import simpy [as 別名]
# 或者: from simpy import Environment [as 別名]
def __init__(self, environment, realtime, trace, gui, buffers, used_productions, initial_time=0, environment_process=None, **kwargs):
self.gui = environment and gui and GUI
self.__simulation = simpy.Environment(initial_time=round(initial_time, 4))
self.__env = environment
if self.__env:
self.__env.gui = gui and GUI #set the GUI of the environment in the same way as this one; it is used so that Environment prints its output directly in simpy simulation
self.__realtime = realtime
if not self.gui and realtime:
self.__simulation = simpy.RealtimeEnvironment()
self.__trace = trace
self.__dict_extra_proc = {key: None for key in buffers}
self.__buffers = buffers
self.__pr = used_productions
self.__simulation.process(self.__procprocessGenerator__())
self.__interruptibles = {} #interruptible processes
self.__dict_extra_proc_activate = {}
for each in self.__dict_extra_proc:
if each != self.__pr._PROCEDURAL:
self.__dict_extra_proc[each] = self.__simulation.process(self.__extraprocessGenerator__(each)) #create simulation processes for all buffers, store them in dict_extra_proc
self.__dict_extra_proc_activate[each] = self.__simulation.event() #create simulation events for all buffers that control simulation flow (they work as locks)
self.__proc_activate = self.__simulation.event() #special event (lock) for procedural module
self.__procs_started = [] #list of processes that are started as a result of production rules
#activate environment process, if environment present
if self.__env:
self.__proc_environment = self.__simulation.process(self.__envGenerator__(ep=environment_process, **kwargs))
self.__environment_activate = self.__simulation.event()
self.__last_event = None #used when stepping thru simulation
#here below -- simulation values, accessible by user
self.current_event = None
self.now = self.__simulation.now