當前位置: 首頁>>代碼示例>>Python>>正文


Python seaborn.tsplot方法代碼示例

本文整理匯總了Python中seaborn.tsplot方法的典型用法代碼示例。如果您正苦於以下問題:Python seaborn.tsplot方法的具體用法?Python seaborn.tsplot怎麽用?Python seaborn.tsplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在seaborn的用法示例。


在下文中一共展示了seaborn.tsplot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_time_series

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_time_series(df, target, tag='eda', directory=None):
    r"""Plot time series data.

    Parameters
    ----------
    df : pandas.DataFrame
        The dataframe containing the ``target`` feature.
    target : str
        The target variable for the time series plot.
    tag : str
        Unique identifier for the plot.
    directory : str, optional
        The full specification of the plot location.

    Returns
    -------
    None : None.

    References
    ----------

    http://seaborn.pydata.org/generated/seaborn.tsplot.html

    """

    logger.info("Generating Time Series Plot")

    # Generate the time series plot

    ts_plot = sns.tsplot(data=df[target])
    ts_fig = ts_plot.get_figure()

    # Save the plot
    write_plot('seaborn', ts_fig, 'time_series_plot', tag, directory)


#
# Function plot_candlestick
# 
開發者ID:ScottfreeLLC,項目名稱:AlphaPy,代碼行數:41,代碼來源:plots.py

示例2: plot_avg_return

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_avg_return(file_name, granularity):
    plotting_data = torch.load(file_name + "_processed_data")

    returns = plotting_data['returns']
    unique_frames = plotting_data['unique_frames']
    x_len = len(unique_frames)
    x_index = [i for i in numpy.arange(0, x_len, granularity)]

    x = unique_frames[::granularity]
    y = numpy.transpose(numpy.array(returns)[x_index, :])

    f, ax = plt.subplots(1, 1, figsize=[3, 2], dpi=300)
    sns.set_style("ticks")
    sns.set_context("paper")

    # Find the order of magnitude of the last frame
    order = int(math.log10(unique_frames[-1]))
    range_frames = int(unique_frames[-1]/ (10**order))

    sns.tsplot(data=y, time=numpy.array(x)/(10**order), color='b')
    ax.set_xticks(numpy.arange(range_frames + 1))
    plt.show()

    f.savefig(file_name + "_avg_return.pdf", bbox_inches="tight")
    plt.close(f) 
開發者ID:kenjyoung,項目名稱:MinAtar,代碼行數:27,代碼來源:plot_return.py

示例3: roc_plot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def roc_plot(fpr, tpr):
    """ Plot 1-Specificity by Sensitivity

    Args:
        fpr: false positive rate from Roc.calculate
        tpr: true positive rate from Roc.calculate

    Returns:
        fig: Will return a matplotlib ROC plot

    """

    plt.figure()
    plt.plot(fpr, tpr, color="red", linewidth=3)
    # fig = sns.tsplot(tpr,fpr,color='red',linewidth=3)
    plt.xlabel("(1 - Specificity)", fontsize=16)
    plt.ylabel("Sensitivity", fontsize=16)
    plt.title("ROC Plot", fontsize=18)
    return 
開發者ID:cosanlab,項目名稱:nltools,代碼行數:21,代碼來源:plotting.py

示例4: plot_data

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_data(data, time="Iteration", value="AverageReturn", combine=False):
    if isinstance(data, list):
        data = pd.concat(data, ignore_index=True)
    plt.figure(figsize=(16, 9))
    sns.set(style="darkgrid", font_scale=1.5)
    if not combine:
        sns.tsplot(data=data, time=time, value=value, unit="Unit", condition="Condition")
    else:
        df1 = data.loc[:, [time, value[0], 'Condition']]
        df1['Statistics'] = value[0]
        df1.rename(columns={value[0]:'Value', 'Condition':'ExpName'}, inplace = True)
        df2 = data.loc[:, [time, value[1], 'Condition']]
        df2['Statistics'] = value[1]
        df2.rename(columns={value[1]:'Value', 'Condition':'ExpName'}, inplace = True)
        data = pd.concat([df1, df2], ignore_index=True)
        sns.lineplot(x=time, y='Value', hue='ExpName', style='Statistics', data=data)
        
    plt.legend(loc='best').draggable()
    plt.savefig('result.png', bbox_inches='tight')
    plt.show() 
開發者ID:KuNyaa,項目名稱:berkeleydeeprlcourse-homework-pytorch,代碼行數:22,代碼來源:plot.py

示例5: plot_data

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_data(data, value="AverageReturn"):
    if isinstance(data, list):
        data = pd.concat(data, ignore_index=True)

    sns.set(style="darkgrid", font_scale=1.5)
    sns.tsplot(data=data, time="Iteration", value=value, unit="Unit", condition="Condition")
    plt.legend(loc='best').draggable()
    plt.show() 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:10,代碼來源:plot.py

示例6: plot_work_trajectories

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_work_trajectories(self, environment, filename):
        """
        Plot the NCMC work trajectories for the given environment and each attempted transition

        Parameters
        ----------
        environment : str
            Name of environment
        filename : str
            Name of output file
        """
        w_t = {state_transition : [] for state_transition in self._state_transitions[environment]}

        for iteration in range(self._n_exen_iterations[environment]):
            logP_ncmc_trajectory = self._ncfile.groups[environment]['NCMCEngine']['protocolwork'][iteration, :]
            state_key = self._storage.get_object(environment, "ExpandedEnsembleSampler", "state_key", iteration)
            proposed_state_key = self._storage.get_object(environment, "ExpandedEnsembleSampler", "proposed_state_key", iteration)
            if state_key == proposed_state_key:
                continue
            w_t[(state_key, proposed_state_key)].append(-logP_ncmc_trajectory)

        w_t_stacked = {state_transition: np.stack(work_trajectories) for state_transition, work_trajectories in w_t.items()}

        with PdfPages(filename) as pdf:
            sns.set(font_scale=2)
            for state_transition, work_array in w_t_stacked.items():

                fig = plt.figure(figsize=(28, 12))
                ax1 = sns.tsplot(work_array, color="Blue")

                iupac_transition = self._state_transition_to_iupac(state_transition)

                plt.title("{} => {} transition {} work trajectory".format(iupac_transition[0], iupac_transition[1], "NCMC"))
                plt.xlabel("step (1fs)")
                plt.ylabel("Work / kT")
                plt.tight_layout()
                pdf.savefig(fig)
                plt.close() 
開發者ID:choderalab,項目名稱:perses,代碼行數:40,代碼來源:analysis.py

示例7: plot_data

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_data(data, value="AverageReturn"):
    if isinstance(data, list):
        data = pd.concat(data, ignore_index=True)
    sns.set(style="darkgrid", font_scale=1.5)
    sns.tsplot(data=data, time="Iteration", value=value, unit="Unit", condition="Condition")
    plt.legend(loc='best').draggable()
    plt.show() 
開發者ID:khanhnamle1994,項目名稱:deep-reinforcement-learning,代碼行數:9,代碼來源:plot.py

示例8: visualize

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def visualize(result, name):
    # (N_samples=5, timesteps=200, types)
    result = np.array(result)
    assert result.shape[2] == 2
    # ax = sns.tsplot(data=result, condition=['OptNet', 'Adam'], linestyle='--')

    def trans(series):
        # (N_samples, timesteps)
        x = np.tile(np.arange(series.shape[1]) + 1,
                    (series.shape[0], 1)).flatten()
        y = series.flatten()
        return {'x': x, 'y': y}
    ax = sns.lineplot(label='OptNet', **trans(result[:, :, 0]))
    ax = sns.lineplot(label='Adam', ax=ax, **trans(result[:, :, 1]))
    ax.lines[-1].set_linestyle('-')
    ax.legend()
    plt.yscale('log'), plt.xlabel('steps')
    plt.ylabel('loss'), plt.title('MNIST')
    plt.ylim(0.09, 3.0)
    plt.xlim(1, result.shape[1])
    plt.grid(which='both', alpha=0.6, color='black', linewidth=0.1,
             linestyle='-')
    ax.tick_params(which='both', direction='in')
    ax.tick_params(which='major', length=8)
    ax.tick_params(which='minor', length=3)
    ax.xaxis.set_minor_locator(AutoMinorLocator(5))

    plt.show()
    plt.savefig(name)
    plt.close() 
開發者ID:chainer,項目名稱:models,代碼行數:32,代碼來源:train_mnist.py

示例9: plot_reward_by_episode

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_reward_by_episode(self, ax=None):
        self.make_palette()

        full_data = pd.DataFrame()
        for idx, (benchmark_data, name) in enumerate(self.benchmarks):
            plot_data = to_timeseries(benchmark_data, x_label="Episode", y_label="Average Episode Reward",
                                    target=rewards_by_episode, cut_x=benchmark_data.min_x('episodes'), smooth=10)
            plot_data['Benchmark'] = name
            full_data = full_data.append(plot_data)

        plot = sns.tsplot(data=full_data, time="Episode", value="Average Episode Reward", unit="experiment",
                          condition='Benchmark', ax=ax, ci=[68, 95], color=self.palette)

        return plot 
開發者ID:krfricke,項目名稱:rl-benchmark,代碼行數:16,代碼來源:result_plotter.py

示例10: plot_reward_by_timestep

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_reward_by_timestep(self, ax=None):
        self.make_palette()

        full_data = pd.DataFrame()
        for idx, (benchmark_data, name) in enumerate(self.benchmarks):
            plot_data = to_timeseries(benchmark_data, x_label="Time step", y_label="Average Episode Reward",
                                    target=rewards_by_timestep, cut_x=benchmark_data.min_x('timesteps'), smooth=10)
            plot_data['Benchmark'] = name
            full_data = full_data.append(plot_data)

        plot = sns.tsplot(data=full_data, time="Time step", value="Average Episode Reward", unit="experiment",
                          condition='Benchmark', ax=ax, ci=[68, 95], color=self.palette)

        return plot 
開發者ID:krfricke,項目名稱:rl-benchmark,代碼行數:16,代碼來源:result_plotter.py

示例11: plot_reward_by_second

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_reward_by_second(self, ax=None):
        self.make_palette()

        full_data = pd.DataFrame()
        for idx, (benchmark_data, name) in enumerate(self.benchmarks):
            plot_data = to_timeseries(benchmark_data, x_label="Second", y_label="Average Episode Reward",
                                    target=rewards_by_second, cut_x=benchmark_data.min_x('seconds'), smooth=10)
            plot_data['Benchmark'] = name
            full_data = full_data.append(plot_data)

        plot = sns.tsplot(data=full_data, time="Second", value="Average Episode Reward", unit="experiment",
                          condition='Benchmark', ax=ax, ci=[68, 95], color=self.palette)

        return plot 
開發者ID:krfricke,項目名稱:rl-benchmark,代碼行數:16,代碼來源:result_plotter.py

示例12: plot_roc_curve_from_df

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_roc_curve_from_df(
    df, auc_dict_list=None, output_filepath=None, figsize=(6, 6)
):
    """From a df with multiple methods plot a roc curve using sns.tspot."""
    xlabel = 'False Discovery Rate'
    ylabel = 'True Positive Rate'
    title = 'Receiver Operating Characteristic'

    # rename method name to include AUC to show it in legend
    if auc_dict_list:
        for method in auc_dict_list.keys():
            mean_auc = np.mean(auc_dict_list[method])
            method_indices = df['method'] == method
            df['mean_auc'] = mean_auc
            df.loc[method_indices, 'method'] = (
                '{} '.format(
                    method.capitalize()
                    if method != 'INtERAcT'
                    else method
                ) +
                'AUC=%0.2f' % mean_auc
            )
        df = df.sort_values(by='method')

    df.rename(columns={'method': ''}, inplace=True)  # to avoid legend title
    plt.figure(figsize=figsize)
    sns.set_style("whitegrid", {'axes.grid': False})
    sns.tsplot(
        data=df, time='XX', value='YY',
        condition='', unit='pathway', legend=True
    )
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.title(title)

    if output_filepath:
        plt.savefig(output_filepath, bbox_inches='tight') 
開發者ID:drugilsberg,項目名稱:interact,代碼行數:41,代碼來源:roc.py

示例13: calibration_plot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def calibration_plot(
        fraction_positives,
        mean_predicted_values,
        algorithm_names=None,
        filename=None
):
    assert len(fraction_positives) == len(mean_predicted_values)

    sns.set_style('whitegrid')

    colors = plt.get_cmap('tab10').colors

    num_algorithms = len(fraction_positives)

    plt.figure(figsize=(9, 9))
    plt.grid(which='both')
    plt.grid(which='minor', alpha=0.5)
    plt.grid(which='major', alpha=0.75)

    plt.plot([0, 1], [0, 1], 'k:', label='Perfectly calibrated')

    for i in range(num_algorithms):
        # ax1.plot(mean_predicted_values[i], fraction_positives[i],
        #         label=algorithms[i] if algorithm_names is not None and i < len(algorithms) else '')

        # sns.tsplot(mean_predicted_values[i], fraction_positives[i], ax=ax1, color=colors[i])

        assert len(mean_predicted_values[i]) == len(fraction_positives[i])
        order = min(3, len(mean_predicted_values[i]) - 1)

        sns.regplot(mean_predicted_values[i], fraction_positives[i],
                    order=order, x_estimator=np.mean, color=colors[i],
                    marker='o', scatter_kws={'s': 40},
                    label=algorithm_names[
                        i] if algorithm_names is not None and i < len(
                        algorithm_names) else '')


    ticks = np.linspace(0.0, 1.0, num=11)
    plt.xlim([-0.05, 1.05])
    plt.xticks(ticks)
    plt.xlabel('Predicted probability')
    plt.ylabel('Observed probability')
    plt.ylim([-0.05, 1.05])
    plt.yticks(ticks)
    plt.legend(loc='lower right')
    plt.title('Calibration (reliability curve)')

    plt.tight_layout()
    ludwig.contrib.contrib_command("visualize_figure", plt.gcf())
    if filename:
        plt.savefig(filename)
    else:
        plt.show() 
開發者ID:uber,項目名稱:ludwig,代碼行數:56,代碼來源:visualization_utils.py

示例14: plot_data

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_data(data, xaxis='Epoch', value="AverageEpRet", condition="Condition1", smooth=1, **kwargs):
    if smooth > 1:
        """
        smooth data with moving window average.
        that is,
            smoothed_y[t] = average(y[t-k], y[t-k+1], ..., y[t+k-1], y[t+k])
        where the "smooth" param is width of that window (2k+1)
        """
        y = np.ones(smooth)
        for datum in data:
            x = np.asarray(datum[value])
            z = np.ones(len(x))
            smoothed_x = np.convolve(x,y,'same') / np.convolve(z,y,'same')
            datum[value] = smoothed_x

    if isinstance(data, list):
        data = pd.concat(data, ignore_index=True)
    sns.set(style="darkgrid", font_scale=1.5)
    sns.tsplot(data=data, time=xaxis, value=value, unit="Unit", condition=condition, ci='sd', **kwargs)
    """
    If you upgrade to any version of Seaborn greater than 0.8.1, switch from 
    tsplot to lineplot replacing L29 with:

        sns.lineplot(data=data, x=xaxis, y=value, hue=condition, ci='sd', **kwargs)

    Changes the colorscheme and the default legend style, though.
    """
    plt.legend(loc='best').set_draggable(True)
    #plt.legend(loc='upper center', ncol=3, handlelength=1,
    #           borderaxespad=0., prop={'size': 13})

    """
    For the version of the legend used in the Spinning Up benchmarking page, 
    swap L38 with:

    plt.legend(loc='upper center', ncol=6, handlelength=1,
               mode="expand", borderaxespad=0., prop={'size': 13})
    """

    xscale = np.max(np.asarray(data[xaxis])) > 5e3
    if xscale:
        # Just some formatting niceness: x-axis scale in scientific notation if max x is large
        plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))

    plt.tight_layout(pad=0.5) 
開發者ID:openai,項目名稱:spinningup,代碼行數:47,代碼來源:plot.py

示例15: plot_kdes_from_bs

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import tsplot [as 別名]
def plot_kdes_from_bs(x:np.ndarray, bs_stats:Dict[str,Any], name2args:Dict[str,Dict[str,Any]], 
                      feat:str, units:Optional[str]=None, moments=True,
                      savename:Optional[str]=None, settings:PlotSettings=PlotSettings()) -> None:
    r'''
    Plots KDEs computed via :meth:`~lumin.utils.statistics.bootstrap_stats`

    Arguments:
        bs_stats: (filtered) dictionary retruned by :meth:`~lumin.utils.statistics.bootstrap_stats`
        name2args: Dictionary mapping names of different distributions to arguments to pass to seaborn tsplot
        feat: Name of feature being plotted (for axis lablels)
        units: Optional units to show on axes
        moments: whether to display mean and standard deviation of each distribution
        savename: Optional name of file to which to save the plot of feature importances
        settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance
    '''

    # TODO: update to sns 9

    with sns.axes_style(**settings.style), sns.color_palette(settings.cat_palette) as palette:
        plt.figure(figsize=(settings.w_mid, settings.h_mid))
        for i, name in enumerate(name2args):
            if 'color' not in name2args[name]: name2args[name]['color'] = palette[i]
            if 'label' in name2args[name]:
                name2args[name]['condition'] = name2args[name]['label']
                name2args[name].pop('label')
            if 'condition' in name2args[name] and moments:
                mean, mean_unc = uncert_round(np.mean(bs_stats[f'{name}_mean']), np.std(bs_stats[f'{name}_mean'], ddof=1))
                std, std_unc = uncert_round(np.mean(bs_stats[f'{name}_std']), np.std(bs_stats[f'{name}_std'], ddof=1))
                name2args[name]['condition'] += r', $\overline{x}=' + r'{}\pm{}\ \sigma= {}\pm{}$'.format(mean, mean_unc, std, std_unc)
            sns.tsplot(data=bs_stats[f'{name}_kde'], time=x, **name2args[name])

        plt.legend(loc=settings.leg_loc, fontsize=settings.leg_sz)
        y_lbl = r'$\frac{1}{N}\ \frac{dN}{d' + feat.replace('$','') + r'}$'
        if units is not None:
            x_lbl = feat + r'$\ [' + units + r']$'
            y_lbl += r'$\ [' + units + r'^{-1}]$'
        else:
            x_lbl = feat
        plt.xlabel(x_lbl, fontsize=settings.lbl_sz, color=settings.lbl_col)
        plt.ylabel(y_lbl, fontsize=settings.lbl_sz, color=settings.lbl_col)
        plt.xticks(fontsize=settings.tk_sz, color=settings.tk_col)
        plt.yticks(fontsize=settings.tk_sz, color=settings.tk_col)
        plt.title(settings.title, fontsize=settings.title_sz, color=settings.title_col, loc=settings.title_loc)
        if savename is not None: plt.savefig(settings.savepath/f'{savename}{settings.format}', bbox_inches='tight')
        plt.show() 
開發者ID:GilesStrong,項目名稱:lumin,代碼行數:47,代碼來源:data_viewing.py


注:本文中的seaborn.tsplot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。