當前位置: 首頁>>代碼示例>>Python>>正文


Python seaborn.stripplot方法代碼示例

本文整理匯總了Python中seaborn.stripplot方法的典型用法代碼示例。如果您正苦於以下問題:Python seaborn.stripplot方法的具體用法?Python seaborn.stripplot怎麽用?Python seaborn.stripplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在seaborn的用法示例。


在下文中一共展示了seaborn.stripplot方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: violin_jitter

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def violin_jitter(X, genes, gene, labels, focus, background=None,
                  xlabels=None):
    gidx = list(genes).index(gene)

    focus_idx = focus == labels
    if background is None:
        background_idx = focus != labels
    else:
        background_idx = background == labels

    if xlabels is None:
        xlabels = [ 'Background', 'Focus' ]

    x_gene = X[:, gidx].toarray().flatten()
    x_focus = x_gene[focus_idx]
    x_background = x_gene[background_idx]
    
    plt.figure()
    sns.violinplot(data=[ x_focus, x_background ], scale='width', cut=0)
    sns.stripplot(data=[ x_focus, x_background ], jitter=True, color='black', size=1)
    plt.xticks([0, 1], xlabels)
    plt.savefig('{}_violin_{}.png'.format(NAMESPACE, gene)) 
開發者ID:brianhie,項目名稱:geosketch,代碼行數:24,代碼來源:umbilical.py

示例2: plot_read_count_dists

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def plot_read_count_dists(counts, h=8, n=50):
    """Boxplots of read count distributions """

    scols,ncols = base.get_column_names(counts)
    df = counts.sort_values(by='mean_norm',ascending=False)[:n]
    df = df.set_index('name')[ncols]
    t = df.T
    w = int(h*(len(df)/60.0))+4
    fig, ax = plt.subplots(figsize=(w,h))
    if len(scols) > 1:
        sns.stripplot(data=t,linewidth=1.0,palette='coolwarm_r')
        ax.xaxis.grid(True)
    else:
        df.plot(kind='bar',ax=ax)
    sns.despine(offset=10,trim=True)
    ax.set_yscale('log')
    plt.setp(ax.xaxis.get_majorticklabels(), rotation=90)
    plt.ylabel('read count')
    #print (df.index)
    #plt.tight_layout()
    fig.subplots_adjust(bottom=0.2,top=0.9)
    return fig 
開發者ID:dmnfarrell,項目名稱:smallrnaseq,代碼行數:24,代碼來源:plotting.py

示例3: bar_box_violin_dot_plots

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def bar_box_violin_dot_plots(data, category_col, numeric_col, axes, file_name=None):
    sns.barplot(category_col, numeric_col, data=data, ax=axes[0])
    sns.boxplot(
        category_col, numeric_col, data=data[data[numeric_col].notnull()], ax=axes[2]
    )
    sns.violinplot(
        category_col,
        numeric_col,
        data=data,
        kind="violin",
        inner="quartile",
        scale="count",
        split=True,
        ax=axes[3],
    )
    sns.stripplot(category_col, numeric_col, data=data, jitter=True, ax=axes[1])
    sns.despine(left=True) 
開發者ID:eyadsibai,項目名稱:brute-force-plotter,代碼行數:19,代碼來源:brute_force_plotter.py

示例4: plot_similardishes

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def plot_similardishes(idx,xlim):
    match = yum_ingr2.iloc[yum_cos[idx].argsort()[-21:-1]][::-1]
    newidx = match.index.get_values()
    match['cosine'] = yum_cos[idx][newidx]
    match['rank'] = range(1,1+len(newidx))

    label1, label2 =[],[]
    for i in match.index:
        label1.append(match.ix[i,'cuisine'])
        label2.append(match.ix[i,'recipeName'])

    fig = plt.figure(figsize=(10,10))
    ax = sns.stripplot(y='rank', x='cosine', data=match, jitter=0.05,
                       hue='cuisine',size=15,orient="h")
    ax.set_title(yum_ingr2.ix[idx,'recipeName']+'('+yum_ingr2.ix[idx,'cuisine']+')',fontsize=18)
    ax.set_xlabel('Flavor cosine similarity',fontsize=18)
    ax.set_ylabel('Rank',fontsize=18)
    ax.yaxis.grid(color='white')
    ax.xaxis.grid(color='white')

    for label, y,x, in zip(label2, match['rank'],match['cosine']):
         ax.text(x+0.001,y-1,label, ha = 'left')
    ax.legend(loc = 'lower right',prop={'size':14})
    ax.set_ylim([20,-1])
    ax.set_xlim(xlim) 
開發者ID:lingcheng99,項目名稱:Flavor-Network,代碼行數:27,代碼來源:recipe_recommendation.py

示例5: geoValueWeightedVisulization

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def geoValueWeightedVisulization(valueDes):
    valueDes["ID"]=valueDes.index
    sns.set(style="whitegrid")
    # Make the PairGrid
    extractedColumns=["count","mean","std","max"]
    g=sns.PairGrid(valueDes.sort_values("count", ascending=False),x_vars=extractedColumns, y_vars=["ID"],height=10, aspect=.25)
    # Draw a dot plot using the stripplot function
    g.map(sns.stripplot, size=10, orient="h",palette="ch:s=1,r=-.1,h=1_r", linewidth=1, edgecolor="w")    
    # Use the same x axis limits on all columns and add better labels
    g.set(xlabel="value", ylabel="") #g.set(xlim=(0, 25), xlabel="Crashes", ylabel="")
    # Use semantically meaningful titles for the columns
    titles=valueDes.columns.tolist() 
    for ax, title in zip(g.axes.flat, titles):
        # Set a different title for each axes
        ax.set(title=title)
        # Make the grid horizontal instead of vertical
        ax.xaxis.grid(False)
        ax.yaxis.grid(True)
    sns.despine(left=True, bottom=True) 
開發者ID:richieBao,項目名稱:python-urbanPlanning,代碼行數:21,代碼來源:distanceWeightStatistic.py

示例6: astro_oligo_violin

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def astro_oligo_violin(X, genes, gene, labels, name):
    X = X.toarray()

    gidx = list(genes).index(gene)

    astro = X[labels == 'astro', gidx]
    oligo = X[labels == 'oligo', gidx]
    both = X[labels == 'both', gidx]

    plt.figure()
    sns.violinplot(data=[ astro, oligo, both ], scale='width', cut=0)
    sns.stripplot(data=[ astro, oligo, both ], jitter=True, color='black', size=1)
    plt.xticks([0, 1, 2], ['Astrocytes', 'Oligodendrocytes', 'Both'])
    plt.savefig('{}_violin_{}.svg'.format(name, gene)) 
開發者ID:brianhie,項目名稱:geosketch,代碼行數:16,代碼來源:mouse_brain_subcluster.py

示例7: plot_imp_strip

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def plot_imp_strip(d, mi, imp_col, palette=None,
                   title="Imputation Strip", **plot_kwgs):
    """Create the strip plot for multiply imputed data.

    Args:
        d (list): dataset returned from multiple imputation.
        mi (MultipleImputer): multiple imputer used to generate d.
        imp_col (str): column to plot. Should be a column with imputations.
        title (str, Optional): title of plot. Default is "Imputation Strip".
        palette (list, tuple, Optional): colors for the imps and observed.
            Default is None. if None, colors default to ["r","c"].
        **plot_kwgs: keyword arguments used by sns.set.

    Returns:
        sns.distplot: stripplot for imputed data

    Raises:
        ValueError: see _validate_data method.
    """

    # set plot type, validate, and define names necessary
    _default_plot_args(**plot_kwgs)
    _validate_data(d, mi, imp_col)
    datasets_merged = _melt_df(d, mi, imp_col)
    if palette is None:
        palette = ["r", "c"]

    # stripplot example
    sns.stripplot(
        x="imp_num", y=imp_col, hue="imputed", palette=palette,
        data=datasets_merged, jitter=True, hue_order=["yes", "no"], dodge=True
    ).set(xlabel="Imputation Number", title=title) 
開發者ID:kearnz,項目名稱:autoimpute,代碼行數:34,代碼來源:imputations.py

示例8: run_strip_plot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def run_strip_plot(panc_df, gtex_df, panc_labels, gtex_labels):
    assert panc_df.columns.equals(gtex_df.columns)
    psi_df = pd.concat((panc_df, gtex_df), axis=0)
    assert psi_df.shape[0] == panc_df.shape[0] + gtex_df.shape[0]
    assert psi_df.columns.unique().size == psi_df.shape[1]
    assert panc_df.index.equals(panc_labels.index)
    assert gtex_df.index.equals(gtex_labels.index)
    event_list = psi_df.columns.tolist()
    psi_df_aug = psi_df.copy()
    psi_df_aug['cnc'] = None
    psi_df_aug.loc[panc_df.index, ['cnc']] = panc_labels.loc[panc_df.index]
    psi_df_aug.loc[gtex_df.index, ['cnc']] = gtex_labels.loc[gtex_df.index]
    unq_panc_labels = sorted(panc_labels.unique().tolist())
    unq_gtex_labels = sorted(gtex_labels.unique().tolist())
    assert np.intersect1d(unq_panc_labels, unq_gtex_labels).size == 0
    plt.close()
    label_list = unq_panc_labels + unq_gtex_labels
    color_lut = _get_stripplot_color_lut(unq_panc_labels, unq_gtex_labels)
    for event in event_list:
        outpath = os.path.join(PLOT_DIR, 'stripplots', '%s_stripplot.png'%event)
        if not os.path.exists(os.path.dirname(outpath)): os.makedirs(os.path.dirname(outpath))
        fig, ax = plt.subplots(figsize=(20,3))
        sns.stripplot(x='cnc', y=event, data=psi_df_aug,
                      palette=color_lut, s=3,
                      order=label_list,
                      jitter=True, ax=ax)
        ax.axvline(len(unq_panc_labels) - .5, color='black', ls='--')
        ax.set_xticklabels(ax.get_xticklabels(), rotation = 90)
        ax.set_ylim(-.05, 1.05)
        ax.title.set_text('Gene: %s Event type: %s Event ID: %d'%(_decode_event_name(event)))
        ax.set_ylabel('psi')
        ax.set_xlabel('')
        axs.clean_axis(ax)
        print "Writing: %s" %outpath
        plt.savefig(outpath, bbox_inches='tight')
        pdf_outpath = re.sub('.png$', '.pdf', outpath)
        print "Writing: %s" %pdf_outpath
        plt.savefig(pdf_outpath, bbox_inches='tight')
        plt.close()
    return 
開發者ID:ratschlab,項目名稱:pancanatlas_code_public,代碼行數:42,代碼來源:sf_heatmap.py

示例9: strip

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def strip(self, x, y):
        """
        Stripplot plot ``x`` across ``y`` feature values.
        """
        plt.figure(figsize=(8,4))
        sns.stripplot(x, y, hue=Base.target, data=Base.train, jitter=True)
        plt.xlabel(x, fontsize=12)
        plt.ylabel(y, fontsize=12)
        plt.show(); 
開發者ID:Speedml,項目名稱:speedml,代碼行數:11,代碼來源:plot.py

示例10: geoValVisulization_a

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def geoValVisulization_a(geoPd):
    geoPd["ID"]=geoPd.index.astype(str)
    print(geoPd.columns)
    '''
Index(['park_no', 'label', 'park_class', 'location', 'acres', 'shape_area',
       'shape_leng', 'perimeter', 'geometry', 'shapelyArea', 'shapelyLength',
       'shapeIdx', 'FRAC', 'popu_count', 'popu_mean', 'popu_std', 'popu_min',
       'popu_25%', 'popu_50%', 'popu_75%', 'popu_max', 'SVFW_count',
       'SVFW_mean', 'SVFW_std', 'SVFW_min', 'SVFW_25%', 'SVFW_50%', 'SVFW_75%',
       'SVFW_max', 'polyID', 'SVFep_min', 'SVFep_max', 'SVFep_mean',
       'SVFep_count', 'SVFep_sum', 'SVFep_std', 'SVFep_median',
       'SVFep_majority', 'SVFep_minority', 'SVFep_unique', 'SVFep_range',
       'SVFep_nodata', 'HVege_min', 'HVege_max', 'HVege_mean', 'HVege_count',
       'HVege_sum', 'HVege_std', 'HVege_median', 'HVege_majority',
       'HVege_minority', 'HVege_range', 'HVege_nodata', 'MVege_min',
       'MVege_max', 'MVege_mean', 'MVege_count', 'MVege_sum', 'MVege_std',
       'MVege_median', 'MVege_majority', 'MVege_minority', 'MVege_range',
       'MVege_nodata', 'LVege_min', 'LVege_max', 'LVege_mean', 'LVege_count',
       'LVege_sum', 'LVege_std', 'LVege_median', 'LVege_majority',
       'LVege_minority', 'LVege_range', 'LVege_nodata', 'facilityFre',
       'facilityID', 'cla_treeCanopy', 'cla_grassShrub', 'cla_bareSoil',
       'cla_buildings', 'cla_roadsRailraods', 'cla_otherPavedSurfaces',
       'cla_water', 'classi_count', 'ID'],
      dtype='object')
    '''
    sns.set(style="whitegrid")
    
    # Make the PairGrid
    extractedColumns=['shapelyArea','shapelyLength',
                      'shapeIdx','FRAC',
                      'SVFW_mean','SVFW_std',
                      'SVFW_mean','SVFW_std',
                      'popu_std','popu_mean',                      
                      'facilityFre',
                      'classi_count','cla_treeCanopy', 'cla_grassShrub','cla_bareSoil', 'cla_buildings', 'cla_roadsRailraods', 'cla_otherPavedSurfaces','cla_water',
                      'HVege_count','HVege_mean',
                      'LVege_count','LVege_mean',
                      
                      ]
    # geoPdSort=geoPd.sort_values('shapelyArea', ascending=False)
    g=sns.PairGrid(geoPd.sort_values('shapelyArea', ascending=False),x_vars=extractedColumns, y_vars=["label"],height=20, aspect=.25)
    # g=sns.PairGrid(geoPd,x_vars=extractedColumns, y_vars=["ID"],height=20, aspect=.25)

    # Draw a dot plot using the stripplot function
    g.map(sns.stripplot, size=5, orient="h",palette="ch:s=1,r=-.1,h=1_r", linewidth=1, edgecolor="w")    
    # Use the same x axis limits on all columns and add better labels
    g.set(xlabel="value", ylabel="") #g.set(xlim=(0, 25), xlabel="Crashes", ylabel="")
    # Use semantically meaningful titles for the columns
    g.fig.set_figwidth(30)
    g.fig.set_figheight(80)
    
    titles=extractedColumns
    for ax, title in zip(g.axes.flat, titles):
        # Set a different title for each axes
        ax.set(title=title)
        # Make the grid horizontal instead of vertical
        ax.xaxis.grid(False)
        ax.yaxis.grid(True)
    sns.despine(left=True, bottom=True)        

    return geoPd 
開發者ID:richieBao,項目名稱:python-urbanPlanning,代碼行數:63,代碼來源:valueWeightStatistic_merge.py

示例11: visualisationDF

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import stripplot [as 別名]
def visualisationDF(df):    
    dataFrameInfoPrint(df)
    #graph-01
    # df['shapelyArea'].plot.hist(alpha=0.5)    
    #graph-02
    # df['shapelyArea'].plot.kde()    
    #graph-03
    # df[['shapelyLength','shapeIdx']].plot.scatter('shapelyLength','shapeIdx')    
    #normalize data in a range of columns
    cols_to_norm=['shapeIdx', 'FRAC']
    df[cols_to_norm]=df[cols_to_norm].apply(lambda x: (x - x.min()) / (x.max() - x.min()))
    
    a='shapeIdx'
    b='FRAC'
    c='park_class'
    
    #graph-04
    # sns.jointplot(a,b,df,kind='hex')
    
    #graph-05
    # sns.jointplot(a, b, df, kind='kde')
    
    #graph-06
    # sns.catplot(x='park_class',y=a,data=df)
    
    #graph-07
    '''
    # Initialize the figure
    f, ax = plt.subplots()
    sns.despine(bottom=True, left=True)
    # Show each observation with a scatterplot
    sns.stripplot(x=a, y=c, hue=c,data=df, dodge=True, alpha=.25, zorder=1)    
    # Show the conditional means
    sns.pointplot(x=a, y=c, hue=c,data=df, dodge=.532, join=False, palette="dark",markers="d", scale=.75, ci=None)
    # Improve the legend 
    handles, labels = ax.get_legend_handles_labels()
    ax.legend(handles[3:], labels[3:], title=b,handletextpad=0, columnspacing=1,loc="lower right", ncol=3, frameon=True)
    '''
    
    #graph-08
    # sns.catplot(x=c,y=a,data=df,kind='box')
    
    #graph-09
    # sns.catplot(x=c,y=a,data=df,kind='violin')
    
    #graph-10
    '''
    f, axs = plt.subplots(1, 2, figsize=(12, 6))
    # First axis    
    df[b].plot.hist(ax=axs[0])
    # Second axis
    df[b].plot.kde(ax=axs[1])
    # Title
    f.suptitle(b)
    # Display
    plt.show()
    '''        

#從新定義柵格投影,參考投影為vector .shp文件 
開發者ID:richieBao,項目名稱:python-urbanPlanning,代碼行數:61,代碼來源:distanceWeightCalculation_raster2Polygon.py


注:本文中的seaborn.stripplot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。