當前位置: 首頁>>代碼示例>>Python>>正文


Python seaborn.set_context方法代碼示例

本文整理匯總了Python中seaborn.set_context方法的典型用法代碼示例。如果您正苦於以下問題:Python seaborn.set_context方法的具體用法?Python seaborn.set_context怎麽用?Python seaborn.set_context使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在seaborn的用法示例。


在下文中一共展示了seaborn.set_context方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _plot_weights

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def _plot_weights(self, title, file, layer_index=0, vmin=-5, vmax=5):
        import seaborn as sns
        sns.set_context("paper")

        layers = self.iwp.estimator.steps[-1][1].coefs_
        layer = layers[layer_index]
        f, ax = plt.subplots(figsize=(18, 12))
        weights = pd.DataFrame(layer)
        weights.index = self.iwp.inputs

        sns.set(font_scale=1.1)

        # Draw a heatmap with the numeric values in each cell
        sns.heatmap(
            weights, annot=True, fmt=".1f", linewidths=.5, ax=ax,
            cmap="difference", center=0, vmin=vmin, vmax=vmax,
            # annot_kws={"size":14},
        )
        ax.tick_params(labelsize=18)
        f.tight_layout()
        f.savefig(file) 
開發者ID:atmtools,項目名稱:typhon,代碼行數:23,代碼來源:common.py

示例2: plot_avg_return

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def plot_avg_return(file_name, granularity):
    plotting_data = torch.load(file_name + "_processed_data")

    returns = plotting_data['returns']
    unique_frames = plotting_data['unique_frames']
    x_len = len(unique_frames)
    x_index = [i for i in numpy.arange(0, x_len, granularity)]

    x = unique_frames[::granularity]
    y = numpy.transpose(numpy.array(returns)[x_index, :])

    f, ax = plt.subplots(1, 1, figsize=[3, 2], dpi=300)
    sns.set_style("ticks")
    sns.set_context("paper")

    # Find the order of magnitude of the last frame
    order = int(math.log10(unique_frames[-1]))
    range_frames = int(unique_frames[-1]/ (10**order))

    sns.tsplot(data=y, time=numpy.array(x)/(10**order), color='b')
    ax.set_xticks(numpy.arange(range_frames + 1))
    plt.show()

    f.savefig(file_name + "_avg_return.pdf", bbox_inches="tight")
    plt.close(f) 
開發者ID:kenjyoung,項目名稱:MinAtar,代碼行數:27,代碼來源:plot_return.py

示例3: plot_evaluation_episode_reward

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def plot_evaluation_episode_reward():
	pylab.clf()
	sns.set_context("poster")
	pylab.plot(0, 0)
	episodes = [0]
	average_scores = [0]
	median_scores = [0]
	for n in xrange(len(csv_evaluation)):
		params = csv_evaluation[n]
		episodes.append(params[0])
		average_scores.append(params[1])
		median_scores.append(params[2])
	pylab.plot(episodes, average_scores, sns.xkcd_rgb["windows blue"], lw=2)
	pylab.xlabel("episodes")
	pylab.ylabel("average score")
	pylab.savefig("%s/evaluation_episode_average_reward.png" % args.plot_dir)

	pylab.clf()
	pylab.plot(0, 0)
	pylab.plot(episodes, median_scores, sns.xkcd_rgb["windows blue"], lw=2)
	pylab.xlabel("episodes")
	pylab.ylabel("median score")
	pylab.savefig("%s/evaluation_episode_median_reward.png" % args.plot_dir) 
開發者ID:musyoku,項目名稱:double-dqn,代碼行數:25,代碼來源:experiment.py

示例4: plot_kim_curve

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def plot_kim_curve(tmp):
    sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 5})
    sns.set_style("darkgrid")

    plt.figure(figsize=(20, 10))
    plt.hold('on')
    plt.plot(np.linspace(0, 0.3, 100), tmp['kc_avg'])
    plt.ylim([0, 1])

#    plt.figure(figsize=(10,5))
#    plt.hold('on')
#    legend = []
#    for k,v in bench_res.iteritems():
#        plt.plot(np.linspace(0, 0.3, 100), v['kc_avg'])
#        legend.append(k)
#    plt.ylim([0, 1])
#    plt.legend(legend, loc='lower right') 
開發者ID:davideboscaini,項目名稱:acnn,代碼行數:19,代碼來源:evals.py

示例5: learning_curve

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def learning_curve(self, idxs=[2,3,5,6]):
        import seaborn as sns
        import matplotlib.pyplot as plt
        plt.switch_backend('agg')
        # set style
        sns.set_context("paper", font_scale=1.5,)
        # sns.set_style("ticks", {
        #     "font.family": "Times New Roman",
        #     "font.serif": ["Times", "Palatino", "serif"]})

        for idx in idxs:
            plt.plot(self.logs[self.args.trigger],
                     self.logs[self.header[idx]], label=self.header[idx])
        plt.ylabel(" {} / {} ".format(repr(self.criterion), repr(self.evaluator)))
        if self.args.trigger == 'epoch':
            plt.xlabel("Epochs")
        else:
            plt.xlabel("Iterations")
        plt.suptitle("Training log of {}".format(self.method))
        # remove top&left line
        # sns.despine()
        plt.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
        plt.savefig(os.path.join(Logs_DIR, 'curve', '{}.png'.format(self.repr)),
                    format='png', bbox_inches='tight', dpi=144) 
開發者ID:huster-wgm,項目名稱:geoseg,代碼行數:26,代碼來源:runner.py

示例6: __init__

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def __init__(self):

        sns.set_style("ticks")
        sns.set_context("paper", font_scale=1.5)

        # color palette from colorbrewer (up to 4 colors, good for print and black&white printing)
        # color_brewer_palette = ['#e66101', '#5e3c99', '#fdb863', '#b2abd2']

        # most journals: 300dpi
        plt.rcParams["savefig.dpi"] = 300

        # most journals: 9 cm (or 3.5 inch) for single column width and 18.5 cm (or 7.3 inch) for double column width.
        plt.rcParams["figure.autolayout"] = False
        plt.rcParams["figure.figsize"] = 7.3, 4
        plt.rcParams["axes.labelsize"] = 16
        plt.rcParams["axes.titlesize"] = 16
        plt.rcParams["xtick.labelsize"] = 16
        plt.rcParams["ytick.labelsize"] = 16
        plt.rcParams["font.size"] = 32
        plt.rcParams["lines.linewidth"] = 2.0
        plt.rcParams["lines.markersize"] = 8
        plt.rcParams["legend.fontsize"] = 14 
開發者ID:NREL,項目名稱:floris,代碼行數:24,代碼來源:plotting.py

示例7: plotSleepValueHeatmap

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def plotSleepValueHeatmap(intradayStats, sleepValue=1):
    sns.set_context("poster")
    sns.set_style("darkgrid")

    xTicksDiv = 20
    #stepSize = int(len(xticks)/xTicksDiv)
    stepSize = 60
    xticks = [x for x in intradayStats.columns.values]
    keptticks = xticks[::stepSize]
    xticks = ['' for _ in xticks]
    xticks[::stepSize] = keptticks
    plt.figure(figsize=(16, 4.2))
    g = sns.heatmap(intradayStats.loc[sleepValue].reshape(1,-1))
    g.set_xticklabels(xticks, rotation=45)
    g.set_yticklabels([])
    g.set_ylabel(sleepStats.SLEEP_VALUES[sleepValue])
    plt.tight_layout()
    sns.plt.show() 
開發者ID:5agado,項目名稱:fitbit-analyzer,代碼行數:20,代碼來源:plotting.py

示例8: configure_plt

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def configure_plt():
    rc('font', **{'family': 'sans-serif',
                  'sans-serif': ['Computer Modern Roman']})
    params = {'axes.labelsize': 12,
              'font.size': 12,
              'legend.fontsize': 12,
              'xtick.labelsize': 10,
              'ytick.labelsize': 10,
              'text.usetex': True,
              'figure.figsize': (8, 6)}
    plt.rcParams.update(params)

    sns.set_palette('colorblind')
    sns.set_context("poster")
    sns.set_style("ticks") 
開發者ID:mathurinm,項目名稱:celer,代碼行數:17,代碼來源:plot_utils.py

示例9: make_slashdot_figures

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def make_slashdot_figures(output_path_prefix, method_name_list, slashdot_mse, slashdot_jaccard, slashdot_k_list):
    sns.set_style("darkgrid")
    sns.set_context("paper")

    translator = get_method_name_to_legend_name_dict()

    slashdot_k_list = list(slashdot_k_list)

    fig, axes = plt.subplots(1, 2, sharex=True)

    axes[0].set_title("SlashDot Comments")
    axes[1].set_title("SlashDot Users")

    plt.locator_params(nbins=8)

    # Comments
    for m, method in enumerate(method_name_list):
        axes[0].set_ylabel("MSE")
        axes[0].set_xlabel("Lifetime (sec)")
        axes[0].plot(slashdot_k_list[1:],
                     handle_nan(slashdot_mse[method]["comments"].mean(axis=1))[1:],
                     label=translator[method])

    # Users
    for m, method in enumerate(method_name_list):
        # axes[1].set_ylabel("MSE")
        axes[1].set_xlabel("Lifetime (sec)")
        axes[1].plot(slashdot_k_list[1:],
                     handle_nan(slashdot_mse[method]["users"].mean(axis=1))[1:],
                     label=translator[method])


    axes[1].legend(loc="upper right")

    # plt.show()
    plt.savefig(output_path_prefix + "_mse_slashdot_SNOW" + ".png", format="png")
    plt.savefig(output_path_prefix + "_mse_slashdot_SNOW" + ".eps", format="eps") 
開發者ID:MKLab-ITI,項目名稱:news-popularity-prediction,代碼行數:39,代碼來源:slashdot_results.py

示例10: make_barrapunto_figures

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def make_barrapunto_figures(output_path_prefix, method_name_list, barrapunto_mse, barrapunto_jaccard, barrapunto_k_list):
    sns.set_style("darkgrid")
    sns.set_context("paper")

    translator = get_method_name_to_legend_name_dict()

    barrapunto_k_list = list(barrapunto_k_list)

    fig, axes = plt.subplots(1, 2, sharex=True)

    axes[0].set_title("BarraPunto Comments")
    axes[1].set_title("BarraPunto Users")

    plt.locator_params(nbins=8)

    # Comments
    for m, method in enumerate(method_name_list):
        axes[0].set_ylabel("MSE")
        axes[0].set_xlabel("Lifetime (sec)")
        axes[0].plot(barrapunto_k_list[1:],
                        handle_nan(barrapunto_mse[method]["comments"].mean(axis=1))[1:],
                        label=translator[method])

    # Users
    for m, method in enumerate(method_name_list):
        # axes[1].set_ylabel("MSE")
        axes[1].set_xlabel("Lifetime (sec)")
        axes[1].plot(barrapunto_k_list[1:],
                        handle_nan(barrapunto_mse[method]["users"].mean(axis=1))[1:],
                        label=translator[method])


    axes[1].legend(loc="upper right")

    # plt.show()
    plt.savefig(output_path_prefix + "_mse_barrapunto_SNOW" + ".png", format="png")
    plt.savefig(output_path_prefix + "_mse_barrapunto_SNOW" + ".eps", format="eps") 
開發者ID:MKLab-ITI,項目名稱:news-popularity-prediction,代碼行數:39,代碼來源:slashdot_results.py

示例11: set_context

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def set_context(context="talk"):
    sns.set_context(context) 
開發者ID:rnwolf,項目名稱:jira-metrics-extract,代碼行數:4,代碼來源:charting.py

示例12: plot_gp

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def plot_gp():
    np.random.seed(12345)
    sns.set_context("paper", font_scale=0.65)

    X_test = np.linspace(-10, 10, 100)
    X_train = np.array([-3, 0, 7, 1, -9])
    y_train = np.sin(X_train)

    fig, axes = plt.subplots(2, 2)
    alphas = [0, 1e-10, 1e-5, 1]
    for ix, (ax, alpha) in enumerate(zip(axes.flatten(), alphas)):
        G = GPRegression(kernel="RBFKernel", alpha=alpha)
        G.fit(X_train, y_train)
        y_pred, conf = G.predict(X_test)

        ax.plot(X_train, y_train, "rx", label="observed")
        ax.plot(X_test, np.sin(X_test), label="true fn")
        ax.plot(X_test, y_pred, "--", label="MAP (alpha={})".format(alpha))
        ax.fill_between(X_test, y_pred + conf, y_pred - conf, alpha=0.1)
        ax.set_xticks([])
        ax.set_yticks([])
        sns.despine()

        ax.legend()

    plt.tight_layout()
    plt.savefig("img/gp_alpha.png", dpi=300)
    plt.close("all") 
開發者ID:ddbourgin,項目名稱:numpy-ml,代碼行數:30,代碼來源:nonparametric_plots.py

示例13: plot_results

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def plot_results(res, path):
    """Some results plots"""

    if res is None or len(res) == 0:
        return
    counts = base.pivot_count_data(res, idxcols=['name','ref'])
    x = base.get_fractions_mapped(res)
    print (x)
    import seaborn as sns
    sns.set_style('white')
    sns.set_context("paper",font_scale=1.2)
    fig = plotting.plot_fractions(x)
    fig.savefig(os.path.join(path,'libraries_mapped.png'))
    fig = plotting.plot_sample_counts(counts)
    fig.savefig(os.path.join(path,'total_per_sample.png'))
    fig = plotting.plot_read_count_dists(counts)
    fig.savefig(os.path.join(path,'top_mapped.png'))
    scols,ncols = base.get_column_names(counts)
    for l,df in counts.groupby('ref'):
        if 'mirbase' in l:
            fig = plotting.plot_read_count_dists(df)
            fig.savefig(os.path.join(path,'top_%s.png' %l))
    #if len(scols)>1:
    #    fig = plotting.expression_clustermap(counts)
    #    fig.savefig(os.path.join(path,'expr_map.png'))
    return 
開發者ID:dmnfarrell,項目名稱:smallrnaseq,代碼行數:28,代碼來源:app.py

示例14: plot_episode_reward

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def plot_episode_reward():
	pylab.clf()
	sns.set_context("poster")
	pylab.plot(0, 0)
	episodes = [0]
	scores = [0]
	for n in xrange(len(csv_episode)):
		params = csv_episode[n]
		episodes.append(params[0])
		scores.append(params[1])
	pylab.plot(episodes, scores, sns.xkcd_rgb["windows blue"], lw=2)
	pylab.xlabel("episodes")
	pylab.ylabel("score")
	pylab.savefig("%s/episode_reward.png" % args.plot_dir) 
開發者ID:musyoku,項目名稱:double-dqn,代碼行數:16,代碼來源:experiment.py

示例15: plot_training_episode_highscore

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import set_context [as 別名]
def plot_training_episode_highscore():
	pylab.clf()
	sns.set_context("poster")
	pylab.plot(0, 0)
	episodes = [0]
	highscore = [0]
	for n in xrange(len(csv_training_highscore)):
		params = csv_training_highscore[n]
		episodes.append(params[0])
		highscore.append(params[1])
	pylab.plot(episodes, highscore, sns.xkcd_rgb["windows blue"], lw=2)
	pylab.xlabel("episodes")
	pylab.ylabel("highscore")
	pylab.savefig("%s/training_episode_highscore.png" % args.plot_dir) 
開發者ID:musyoku,項目名稱:double-dqn,代碼行數:16,代碼來源:experiment.py


注:本文中的seaborn.set_context方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。