當前位置: 首頁>>代碼示例>>Python>>正文


Python seaborn.regplot方法代碼示例

本文整理匯總了Python中seaborn.regplot方法的典型用法代碼示例。如果您正苦於以下問題:Python seaborn.regplot方法的具體用法?Python seaborn.regplot怎麽用?Python seaborn.regplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在seaborn的用法示例。


在下文中一共展示了seaborn.regplot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: yield_by_minimal_length_plot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def yield_by_minimal_length_plot(array, name, path,
                                 title=None, color="#4CB391", figformat="png"):
    df = pd.DataFrame(data={"lengths": np.sort(array)[::-1]})
    df["cumyield_gb"] = df["lengths"].cumsum() / 10**9
    yield_by_length = Plot(
        path=path + "Yield_By_Length." + figformat,
        title="Yield by length")
    ax = sns.regplot(
        x='lengths',
        y="cumyield_gb",
        data=df,
        x_ci=None,
        fit_reg=False,
        color=color,
        scatter_kws={"s": 3})
    ax.set(
        xlabel='Read length',
        ylabel='Cumulative yield for minimal length',
        title=title or yield_by_length.title)
    yield_by_length.fig = ax.get_figure()
    yield_by_length.save(format=figformat)
    plt.close("all")
    return yield_by_length 
開發者ID:wdecoster,項目名稱:NanoPlot,代碼行數:25,代碼來源:nanoplotter_main.py

示例2: RelativeDegradation

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def RelativeDegradation(combined_stat_df):
    """
    This function analyzes the relative degradation of one or more functions.
    """
    # print(combined_stat_df)
    fig, axs = plt.subplots(ncols=1, sharex=True)
    # combined_stat_df.plot(kind='scatter', x='rate', y='rel_stress',
    #         alpha=0.5, marker='o', ax=axs[0])
    # combined_stat_df.plot(kind='line', x='rate', y='throughput',
    #         alpha=0.5, marker='o', ax=axs[1])
    # sns.relplot(data=combined_stat_df, x='rate', y='throughput', ax=axs[1], kind='line')
    function_of_interest = 'rand_vector_loop_d'
    test_cats = set(combined_stat_df['Test Category'])
    for test_cat in test_cats:
        df = combined_stat_df[combined_stat_df['Test Category'] == test_cat]
        df = df[df['func_name'] == function_of_interest]
        sns.regplot(data=df, x='rate', y='throughput',
                    ax=axs, order=2, truncate=True)

    plt.xlabel('test')
    plt.ylabel('Function Throughput')
    plt.show()
    plt.close() 
開發者ID:PrincetonUniversity,項目名稱:faas-profiler,代碼行數:25,代碼來源:ComparativeAnalyzer.py

示例3: plot_eval

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def plot_eval(self, eval_dict, labels, path_extension=""):
        """
        Plot the loss function in a overall plot and a zoomed plot.
        :param path_extension: If the plot should be saved in an incremental way.
        """

        def plot(x, y, fit, label):
            sns.regplot(np.array(x), np.array(y), fit_reg=fit, label=label, scatter_kws={"s": 5})

        plt.clf()
        plt.subplot(211)
        idx = np.array(eval_dict.values()[0]).shape[0]
        x = np.array(eval_dict.values())
        for i in range(idx):
            plot(eval_dict.keys(), x[:, i], False, labels[i])
        plt.legend()
        plt.subplot(212)
        for i in range(idx):
            plot(eval_dict.keys()[-int(len(x) * 0.25):], x[-int(len(x) * 0.25):][:, i], True, labels[i])
        plt.xlabel('Epochs')
        plt.savefig(paths.get_plot_evaluation_path_for_model(self.model.get_root_path(), path_extension+".png")) 
開發者ID:larsmaaloee,項目名稱:auxiliary-deep-generative-models,代碼行數:23,代碼來源:base.py

示例4: visualize_results

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def visualize_results(df):
    # Visualize logistic curve using seaborn
    sns.set(style="darkgrid")
    sns.regplot(x="pageviews_cumsum",
                y="is_conversion",
                data=df,
                logistic=True,
                n_boot=500,
                y_jitter=.01,
                scatter_kws={"s": 60})
    sns.set(font_scale=1.3)
    sns.plt.title('Logistic Regression Curve')
    sns.plt.ylabel('Conversion probability')
    sns.plt.xlabel('Cumulative sum of pageviews')
    sns.plt.subplots_adjust(right=0.93, top=0.90, left=0.10, bottom=0.10)
    sns.plt.show()


# Run the final program 
開發者ID:thomhopmans,項目名稱:themarketingtechnologist,代碼行數:21,代碼來源:business_case_solver_without_classes.py

示例5: visualize_results

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def visualize_results(self):
        # Visualize logistic curve using seaborn
        sns.set(style="darkgrid")
        sns.regplot(x="pageviews_cumsum",
                    y="is_conversion",
                    data=self.df,
                    logistic=True,
                    n_boot=500,
                    y_jitter=.01,
                    scatter_kws={"s": 60})
        sns.set(font_scale=1.3)
        sns.plt.title('Logistic Regression Curve')
        sns.plt.ylabel('Conversion probability')
        sns.plt.xlabel('Cumulative sum of pageviews')
        sns.plt.subplots_adjust(right=0.93, top=0.90, left=0.10, bottom=0.10)
        sns.plt.show() 
開發者ID:thomhopmans,項目名稱:themarketingtechnologist,代碼行數:18,代碼來源:business_case_solver.py

示例6: plot_over_time

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def plot_over_time(dfs, path, figformat, title, color):
    num_reads = Plot(path=path + "NumberOfReads_Over_Time." + figformat,
                     title="Number of reads over time")
    s = dfs.loc[:, "lengths"].resample('10T').count()
    ax = sns.regplot(x=s.index.total_seconds() / 3600,
                     y=s,
                     x_ci=None,
                     fit_reg=False,
                     color=color,
                     scatter_kws={"s": 3})
    ax.set(xlabel='Run time (hours)',
           ylabel='Number of reads per 10 minutes',
           title=title or num_reads.title)
    num_reads.fig = ax.get_figure()
    num_reads.save(format=figformat)
    plt.close("all")
    plots = [num_reads]

    if "channelIDs" in dfs:
        pores_over_time = Plot(path=path + "ActivePores_Over_Time." + figformat,
                               title="Number of active pores over time")
        s = dfs.loc[:, "channelIDs"].resample('10T').nunique()
        ax = sns.regplot(x=s.index.total_seconds() / 3600,
                         y=s,
                         x_ci=None,
                         fit_reg=False,
                         color=color,
                         scatter_kws={"s": 3})
        ax.set(xlabel='Run time (hours)',
               ylabel='Active pores per 10 minutes',
               title=title or pores_over_time.title)
        pores_over_time.fig = ax.get_figure()
        pores_over_time.save(format=figformat)
        plt.close("all")
        plots.append(pores_over_time)
    return plots 
開發者ID:wdecoster,項目名稱:NanoPlot,代碼行數:38,代碼來源:timeplots.py

示例7: cumulative_yield

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def cumulative_yield(dfs, path, figformat, title, color):
    cum_yield_gb = Plot(path=path + "CumulativeYieldPlot_Gigabases." + figformat,
                        title="Cumulative yield")
    s = dfs.loc[:, "lengths"].cumsum().resample('1T').max() / 1e9
    ax = sns.regplot(x=s.index.total_seconds() / 3600,
                     y=s,
                     x_ci=None,
                     fit_reg=False,
                     color=color,
                     scatter_kws={"s": 3})
    ax.set(xlabel='Run time (hours)',
           ylabel='Cumulative yield in gigabase',
           title=title or cum_yield_gb.title)
    cum_yield_gb.fig = ax.get_figure()
    cum_yield_gb.save(format=figformat)
    plt.close("all")

    cum_yield_reads = Plot(path=path + "CumulativeYieldPlot_NumberOfReads." + figformat,
                           title="Cumulative yield")
    s = dfs.loc[:, "lengths"].resample('10T').count().cumsum()
    ax = sns.regplot(x=s.index.total_seconds() / 3600,
                     y=s,
                     x_ci=None,
                     fit_reg=False,
                     color=color,
                     scatter_kws={"s": 3})
    ax.set(xlabel='Run time (hours)',
           ylabel='Cumulative yield in number of reads',
           title=title or cum_yield_reads.title)
    cum_yield_reads.fig = ax.get_figure()
    cum_yield_reads.save(format=figformat)
    plt.close("all")
    return [cum_yield_gb, cum_yield_reads] 
開發者ID:wdecoster,項目名稱:NanoPlot,代碼行數:35,代碼來源:timeplots.py

示例8: regplot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def regplot(vals1, vals2, out_pdf, alpha=0.5, x_label=None, y_label=None):
  plt.figure()

  gold = sns.color_palette('husl', 8)[1]
  ax = sns.regplot(
      vals1,
      vals2,
      color='black',
      lowess=True,
      scatter_kws={'color': 'black',
                   's': 4,
                   'alpha': alpha},
      line_kws={'color': gold})

  xmin, xmax = plots.scatter_lims(vals1)
  ymin, ymax = plots.scatter_lims(vals2)

  ax.set_xlim(xmin, xmax)
  if x_label is not None:
    ax.set_xlabel(x_label)
  ax.set_ylim(ymin, ymax)
  if y_label is not None:
    ax.set_ylabel(y_label)

  ax.grid(True, linestyle=':')

  plt.savefig(out_pdf)
  plt.close()


################################################################################
# __main__
################################################################################ 
開發者ID:calico,項目名稱:basenji,代碼行數:35,代碼來源:basenji_hidden.py

示例9: regplot_gc

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def regplot_gc(vals1, vals2, model, out_pdf):
  gold = sns.color_palette('husl', 8)[1]

  plt.figure(figsize=(6, 6))

  # plot data and seaborn model
  ax = sns.regplot(
      vals1,
      vals2,
      color='black',
      order=3,
      scatter_kws={'color': 'black',
                   's': 4,
                   'alpha': 0.5},
      line_kws={'color': gold})

  # plot my model predictions
  svals1 = np.sort(vals1)
  preds2 = model.predict(svals1[:, np.newaxis])
  ax.plot(svals1, preds2)

  # adjust axis
  ymin, ymax = scatter_lims(vals2)
  ax.set_xlim(0.2, 0.8)
  ax.set_xlabel('GC%')
  ax.set_ylim(ymin, ymax)
  ax.set_ylabel('Coverage')

  ax.grid(True, linestyle=':')

  plt.savefig(out_pdf)
  plt.close() 
開發者ID:calico,項目名稱:basenji,代碼行數:34,代碼來源:bam_cov.py

示例10: regplot_shift

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def regplot_shift(vals1, vals2, preds2, out_pdf):
  gold = sns.color_palette('husl', 8)[1]

  plt.figure(figsize=(6, 6))

  # plot data and seaborn model
  ax = sns.regplot(
      vals1,
      vals2,
      color='black',
      order=3,
      scatter_kws={'color': 'black',
                   's': 4,
                   'alpha': 0.5},
      line_kws={'color': gold})

  # plot my model predictions
  ax.plot(vals1, preds2)

  # adjust axis
  ymin, ymax = scatter_lims(vals2)
  ax.set_xlabel('Shift')
  ax.set_ylim(ymin, ymax)
  ax.set_ylabel('Covariance')

  ax.grid(True, linestyle=':')

  plt.savefig(out_pdf)
  plt.close() 
開發者ID:calico,項目名稱:basenji,代碼行數:31,代碼來源:bam_cov.py

示例11: run_spearmanr

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def run_spearmanr(df, condition_col, value_col='acc_diff', log=False, 
                  plot=False):
    """Run Spearman's rank correlation analysis.

    Args:
        df (pd.DataFrame): dataframe where each row is a paper.
        condition_col (str): name of column to use as condition.

    Keyword Args:
        value_col (str): name of column to use as the numerical value to run the
            test on.
        log (bool): if True, use log of `condition_col` before computing the
            correlation.

    Returns:
        (float): U statistic
        (float): p-value
    """
    data1 = np.log10(df[condition_col]) if log else df[condition_col]
    data2 = df[value_col]
    corr, p = spearmanr(data1, data2)

    if plot:
        log_condition_col = 'log_' + condition_col
        df[log_condition_col] = np.log10(df[condition_col])
        fig, ax = plt.subplots()
        sns.regplot(data=df, x=log_condition_col, y=value_col, robust=True, ax=ax)
        ax.set_title('Spearman Rho for {} vs. {}\n(pvalue={:0.4f}, ρ={:0.4f})'.format(
            log_condition_col, value_col, p, corr))
    else:
        fig = None

    return {'test': 'spearmanr', 'pvalue': p, 'stat': corr, 'fig': fig} 
開發者ID:hubertjb,項目名稱:dl-eeg-review,代碼行數:35,代碼來源:utils.py

示例12: plot_correlation

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def plot_correlation(x, y, data, title=None, color=None, kind='joint', ax=None):
    # Extract only logP values.
    data = data[[x, y]]

    # Find extreme values to make axes equal.
    min_limit = np.ceil(min(data.min()) - 1)
    max_limit = np.floor(max(data.max()) + 1)
    axes_limits = np.array([min_limit, max_limit])

    if kind == 'joint':
        grid = sns.jointplot(x=x, y=y, data=data,
                             kind='reg', joint_kws={'ci': None}, stat_func=None,
                             xlim=axes_limits, ylim=axes_limits, color=color)
        ax = grid.ax_joint
        grid.fig.subplots_adjust(top=0.95)
        grid.fig.suptitle(title)
    elif kind == 'reg':
        ax = sns.regplot(x=x, y=y, data=data, color=color, ax=ax)
        ax.set_title(title)

    # Add diagonal line.
    ax.plot(axes_limits, axes_limits, ls='--', c='black', alpha=0.8, lw=0.7)

    # Add shaded area for 0.5-1 logP error.
    palette = sns.color_palette('BuGn_r')
    ax.fill_between(axes_limits, axes_limits - 0.5, axes_limits + 0.5, alpha=0.2, color=palette[2])
    ax.fill_between(axes_limits, axes_limits - 1, axes_limits + 1, alpha=0.2, color=palette[3]) 
開發者ID:samplchallenges,項目名稱:SAMPL6,代碼行數:29,代碼來源:logP_analysis.py

示例13: plot_correlation_with_SEM

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def plot_correlation_with_SEM(x_lab, y_lab, x_err_lab, y_err_lab, data, title=None, color=None, ax=None):
    # Extract only logP values.
    x_error = data.loc[:, x_err_lab]
    y_error = data.loc[:, y_err_lab]
    x_values = data.loc[:, x_lab]
    y_values = data.loc[:, y_lab]
    data = data[[x_lab, y_lab]]

    # Find extreme values to make axes equal.
    min_limit = np.ceil(min(data.min()) - 1)
    max_limit = np.floor(max(data.max()) + 1)
    axes_limits = np.array([min_limit, max_limit])

    # Color
    current_palette = sns.color_palette()
    sns_blue = current_palette[0]

    # Plot
    plt.figure(figsize=(6, 6))
    grid = sns.regplot(x=x_values, y=y_values, data=data, color=color, ci=None)
    plt.errorbar(x=x_values, y=y_values, xerr=x_error, yerr=y_error, fmt="o", ecolor=sns_blue, capthick='2',
                 label='SEM', alpha=0.75)
    plt.axis("equal")

    if len(title) > 70:
        plt.title(title[:70]+"...")
    else:
        plt.title(title)

    # Add diagonal line.
    grid.plot(axes_limits, axes_limits, ls='--', c='black', alpha=0.8, lw=0.7)

    # Add shaded area for 0.5-1 logP error.
    palette = sns.color_palette('BuGn_r')
    grid.fill_between(axes_limits, axes_limits - 0.5, axes_limits + 0.5, alpha=0.2, color=palette[2])
    grid.fill_between(axes_limits, axes_limits - 1, axes_limits + 1, alpha=0.2, color=palette[3])

    plt.xlim(axes_limits)
    plt.ylim(axes_limits) 
開發者ID:samplchallenges,項目名稱:SAMPL6,代碼行數:41,代碼來源:logP_analysis.py

示例14: plot_correlation

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def plot_correlation(x, y, data, title=None, color=None, kind='joint', ax=None):
    # Extract only pKa values.
    data = data[[x, y]]

    # Find extreme values to make axes equal.
    min_limit = np.ceil(min(data.min()) - 2)
    max_limit = np.floor(max(data.max()) + 2)
    axes_limits = np.array([min_limit, max_limit])

    if kind == 'joint':
        grid = sns.jointplot(x=x, y=y, data=data,
                             kind='reg', joint_kws={'ci': None}, stat_func=None,
                             xlim=axes_limits, ylim=axes_limits, color=color)
        ax = grid.ax_joint
        grid.fig.subplots_adjust(top=0.95)
        grid.fig.suptitle(title)
    elif kind == 'reg':
        ax = sns.regplot(x=x, y=y, data=data, color=color, ax=ax)
        ax.set_title(title)

    # Add diagonal line.
    ax.plot(axes_limits, axes_limits, ls='--', c='black', alpha=0.8, lw=0.7)

    # Add shaded area for 0.5-1 pKa error.
    palette = sns.color_palette('BuGn_r')
    ax.fill_between(axes_limits, axes_limits - 0.5, axes_limits + 0.5, alpha=0.2, color=palette[2])
    ax.fill_between(axes_limits, axes_limits - 1, axes_limits + 1, alpha=0.2, color=palette[3]) 
開發者ID:samplchallenges,項目名稱:SAMPL6,代碼行數:29,代碼來源:typeIII_analysis.py

示例15: plot_correlation_with_SEM

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import regplot [as 別名]
def plot_correlation_with_SEM(x_lab, y_lab, x_err_lab, y_err_lab, data, title=None, color=None, ax=None):
    # Extract only pKa values.
    x_error = data.loc[:, x_err_lab]
    y_error = data.loc[:, y_err_lab]
    x_values = data.loc[:, x_lab]
    y_values = data.loc[:, y_lab]
    data = data[[x_lab, y_lab]]

    # Find extreme values to make axes equal.
    min_limit = np.ceil(min(data.min()) - 2)
    max_limit = np.floor(max(data.max()) + 2)
    axes_limits = np.array([min_limit, max_limit])

    # Color
    current_palette = sns.color_palette()
    sns_blue = current_palette[0]

    # Plot
    plt.figure(figsize=(6, 6))
    grid = sns.regplot(x=x_values, y=y_values, data=data, color=color, ci=None)
    plt.errorbar(x=x_values, y=y_values, xerr=x_error, yerr=y_error, fmt="o", ecolor=sns_blue, capthick='2',
                 label='SEM', alpha=0.75)
    plt.axis("equal")

    if len(title) > 70:
        plt.title(title[:70]+"...")
    else:
        plt.title(title)

    # Add diagonal line.
    grid.plot(axes_limits, axes_limits, ls='--', c='black', alpha=0.8, lw=0.7)

    # Add shaded area for 0.5-1 pKa error.
    palette = sns.color_palette('BuGn_r')
    grid.fill_between(axes_limits, axes_limits - 0.5, axes_limits + 0.5, alpha=0.2, color=palette[2])
    grid.fill_between(axes_limits, axes_limits - 1, axes_limits + 1, alpha=0.2, color=palette[3])

    plt.xlim(axes_limits)
    plt.ylim(axes_limits) 
開發者ID:samplchallenges,項目名稱:SAMPL6,代碼行數:41,代碼來源:typeI_analysis.py


注:本文中的seaborn.regplot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。