本文整理匯總了Python中seaborn.lmplot方法的典型用法代碼示例。如果您正苦於以下問題:Python seaborn.lmplot方法的具體用法?Python seaborn.lmplot怎麽用?Python seaborn.lmplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類seaborn
的用法示例。
在下文中一共展示了seaborn.lmplot方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: noisy_adversary_opponent_subset_plot
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import lmplot [as 別名]
def noisy_adversary_opponent_subset_plot(
original_df, subset_specs, transform_specs, logistic=True, plot_line=True, savefile=None
):
subset_df = subset(original_df, subset_specs)
if len(subset_df) == 0:
return
transformed_df = transform(subset_df, transform_specs)
plt.figure(figsize=(10, 7))
if plot_line:
sns.lmplot(data=transformed_df, x="log_noise", y="agent0_win_perc", logistic=logistic)
else:
sns.scatterplot(data=transformed_df, x="log_noise", y="agent0_win_perc")
plt.title(
"{}: Noisy Zoo{} Observations vs Adversary".format(
subset_specs["env"], subset_specs["agent0_path"]
)
)
if savefile is not None:
plt.savefig(savefile)
else:
plt.show()
plt.close()
示例2: noisy_multiple_opponent_subset_plot
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import lmplot [as 別名]
def noisy_multiple_opponent_subset_plot(
original_df, subset_specs, transform_specs, logistic=True, savefile=None
):
subset_df = subset(original_df, subset_specs)
if len(subset_df) == 0:
return
transformed_df = transform(subset_df, transform_specs)
plt.figure(figsize=(10, 7))
sns.lmplot(
data=transformed_df,
x="log_noise",
y="agent0_win_perc",
hue="agent1_path",
logistic=logistic,
)
plt.title(
"{}: Noisy Zoo{} Observations vs Normal Zoos".format(
subset_specs["env"], subset_specs["agent0_path"]
)
)
if savefile is not None:
plt.savefig(savefile)
else:
plt.show()
plt.close()
示例3: make_biplot
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import lmplot [as 別名]
def make_biplot(self, pc_x=1, pc_y=2, outpath=None, dpi=150, custom_markers=None, custom_order=None):
if not custom_order:
custom_order = sorted(self.observations_df[self.observation_colname].unique().tolist())
if not custom_markers:
custom_markers = self.markers
plot = sns.lmplot(data=self.principal_observations_df,
x=self.principal_observations_df.columns[pc_x - 1],
y=self.principal_observations_df.columns[pc_y - 1],
hue=self.observation_colname,
hue_order=custom_order,
fit_reg=False,
size=6,
markers=custom_markers,
scatter_kws={'alpha': 0.5})
plot = (plot.set(title='PC{} vs. PC{}'.format(pc_x, pc_y)))
if outpath:
plot.savefig(outpath, dpi=dpi)
else:
plt.show()
plt.close()
示例4: scatterplot
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import lmplot [as 別名]
def scatterplot(stats_output):
""" Plot Prediction Scatterplot
Args:
stats_output: a pandas file with prediction output
Returns:
fig: Will return a seaborn scatterplot
"""
if "yfit_xval" in stats_output.columns:
sns.lmplot("Y", "yfit_xval", data=stats_output)
else:
sns.lmplot("Y", "yfit_all", data=stats_output)
plt.xlabel("Y", fontsize=16)
plt.ylabel("Predicted Value", fontsize=16)
plt.title("Prediction", fontsize=18)
return
示例5: pca_scatter
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import lmplot [as 別名]
def pca_scatter(self, classifs=None, light=False):
import seaborn as sns
foo = self.get_pca_transf()
if classifs is None:
if light:
plt.scatter(foo[:, 0], foo[:, 1])
else:
bar = pd.DataFrame(
list(zip(foo[:, 0], foo[:, 1])), columns=["PC1", "PC2"])
sns.lmplot("PC1", "PC2", bar, fit_reg=False)
else:
if light:
plt.scatter(foo[:, 0], foo[:, 1], color=cm.Scalar)
else:
bar = pd.DataFrame(list(zip(foo[:, 0], foo[:, 1], classifs)), columns=[
"PC1", "PC2", "Class"])
sns.lmplot("PC1", "PC2", bar, hue="Class", fit_reg=False)
示例6: visualize_can_eng_MLUw
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import lmplot [as 別名]
def visualize_can_eng_MLUw(child_name, can_reader, eng_reader, legend=True):
x_label = '{}\'s age in months'.format(child_name)
can_filenames = can_reader.filenames(sorted_by_age=True)
can_ages = can_reader.age(months=True)
can_MLUs = can_reader.MLUw()
eng_filenames = eng_reader.filenames(sorted_by_age=True)
eng_ages = eng_reader.age(months=True)
eng_MLUs = eng_reader.MLUw()
df = pd.DataFrame({x_label: [can_ages[fn] for fn in can_filenames] + [eng_ages[fn] for fn in eng_filenames],
'MLUw': [can_MLUs[fn] for fn in can_filenames] + [eng_MLUs[fn] for fn in eng_filenames],
'Language': ['Cantonese']*len(can_reader) + ['English']*len(eng_reader)})
MLU_plot = sns.lmplot(x=x_label, y='MLUw', hue='Language', data=df, markers=['o', 'x'],
legend=legend, legend_out=False)
MLU_plot.set(xlim=(10, 45), ylim=(0, 4.5))
MLU_plot.savefig('{}-MLU.pdf'.format(child_name))
# In[11]:
示例7: visualize_data
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import lmplot [as 別名]
def visualize_data(self):
"""
Transform the DataFrame to the 2-dimensional case and visualizes the data. The first tags are used as labels.
:return:
"""
logging.debug("Preparing visualization of DataFrame")
# Reduce dimensionality to 2 features for visualization purposes
X_visualization = self.reduce_dimensionality(self.X, n_features=2)
df = self.prepare_dataframe(X_visualization)
# Set X and Y coordinate for each articles
df['X coordinate'] = df['coordinates'].apply(lambda x: x[0])
df['Y coordinate'] = df['coordinates'].apply(lambda x: x[1])
# Create a list of markers, each tag has its own marker
n_tags_first = len(self.df['tags_first'].unique())
markers_choice_list = ['o', 's', '^', '.', 'v', '<', '>', 'D']
markers_list = [markers_choice_list[i % 8] for i in range(n_tags_first)]
# Create scatter plot
sns.lmplot("X coordinate",
"Y coordinate",
hue="tags_first",
data=df,
fit_reg=False,
markers=markers_list,
scatter_kws={"s": 150})
# Adjust borders and add title
sns.set(font_scale=2)
sns.plt.title('Visualization of TMT articles in a 2-dimensional space')
sns.plt.subplots_adjust(right=0.80, top=0.90, left=0.12, bottom=0.12)
# Show plot
sns.plt.show()
# Train recommender
示例8: probability_plot
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import lmplot [as 別名]
def probability_plot(stats_output):
""" Plot Classification Probability
Args:
stats_output: a pandas file with prediction output
Returns:
fig: Will return a seaborn scatterplot
"""
if "Probability_xval" in stats_output.columns:
sns.lmplot("Y", "Probability_xval", data=stats_output, logistic=True)
else:
sns.lmplot("Y", "Probability_all", data=stats_output, logistic=True)
plt.xlabel("Y", fontsize=16)
plt.ylabel("Predicted Probability", fontsize=16)
plt.title("Prediction", fontsize=18)
return
# # and plot the result
# plt.figure(1, figsize=(4, 3))
# plt.clf()
# plt.scatter(X.ravel(), y, color='black', zorder=20)
# X_test = np.linspace(-5, 10, 300)
# def model(x):
# return 1 / (1 + np.exp(-x))
# loss = model(X_test * clf.coef_ + clf.intercept_).ravel()
# plt.plot(X_test, loss, color='blue', linewidth=3)
示例9: plot_com_properties_relation
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import lmplot [as 別名]
def plot_com_properties_relation(com_clusters, com_fitness_x, com_fitness_y, **kwargs):
"""
Plot the relation between two properties/fitness function of a clustering
:param com_clusters: clustering(s) to analyze (cluster or cluster list)
:param com_fitness_x: first fitness/community property
:param com_fitness_y: first fitness/community property
:param kwargs: parameters for the seaborn lmplot
:return: a seaborn lmplot
Example:
>>> from cdlib import algorithms, viz, evaluation
>>> import networkx as nx
>>> g = nx.karate_club_graph()
>>> coms = algorithms.louvain(g)
>>> coms2 = algorithms.walktrap(g)
>>> lmplot = viz.plot_com_properties_relation([coms,coms2],evaluation.size,evaluation.internal_edge_density)
"""
if isinstance(com_clusters, cdlib.classes.clustering.Clustering):
com_clusters = [com_clusters]
for_df = []
for c in com_clusters:
x = com_fitness_x(c.graph, c, summary=False)
y = com_fitness_y(c.graph, c, summary=False)
for i, vx in enumerate(x):
for_df.append([c.get_description(), vx, y[i]])
df = pd.DataFrame(columns=["Method", com_fitness_x.__name__, com_fitness_y.__name__], data=for_df)
ax = sns.lmplot(x=com_fitness_x.__name__, y=com_fitness_y.__name__, data=df, hue="Method", fit_reg=False,legend=False, x_bins=100,**kwargs)
plt.legend(loc='best')
# if log_x:
# ax.set_xscale("log")
# if log_y:
# ax.set_yscale("log")
plt.tight_layout()
return ax
示例10: PerfMonPlotter
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import lmplot [as 別名]
def PerfMonPlotter(perf_mon_records, time_window = None):
"""
For plotting performance monitoring records.
"""
# Entire records
pqos_records = perf_mon_records['pqos_records']
# perf_records = perf_mon_records['perf_records']
# # Select a time window if provided
# if time_window is not None:
# test_start = pqos_records['timestamp'].min()
# time_window = [5, 10]
# selection_bounds = [test_start + timedelta(seconds=time_window[0]), \
# test_start + timedelta(seconds=time_window[1])]
# pqos_records['In Test Bound'] = (pqos_records['timestamp']>selection_bounds[0]) \
# & (pqos_records['timestamp']<selection_bounds[1])
# perf_records['In Test Bound'] = (perf_records['timestamp']>time_window[0]) \
# & (perf_records['timestamp']<time_window[1])
# pqos_df = pqos_records[pqos_records['In Test Bound']==True]
# perf_df = perf_records[perf_records['In Test Bound']==True]
palette = sns.color_palette("rocket_r", 16)
# 'timestamp','Core','IPC','LLC Misses','LLC Util (KB)','MBL (MB/s)'
fig, axs = plt.subplots(ncols=2, nrows=2, sharex=True)
pqos_records_sum = pqos_records.groupby('timestamp').sum()
pqos_records_sum.plot(y='IPC', ax=axs[0][0])
pqos_records_sum.plot(y='MBL (MB/s)', ax=axs[0][1])
pqos_records_sum.plot(y='LLC Util (KB)', ax=axs[1][0])
pqos_records_sum.plot(y='LLC Misses', ax=axs[1][1])
axs[0][0].set_ylim([0,20])
# sns.relplot(data=pqos_records, x='timestamp', y='IPC', hue='Core', kind='line', palette=palette, alpha=0.75)
# sns.relplot(data=pqos_records, x='timestamp', y='MBL (MB/s)', hue='Core', kind='scatter', palette=palette, alpha=0.75)
# sns.lmplot(data=pqos_df.groupby('timestamp').sum(), x='IPC', y='MBL (MB/s)', palette=palette,
# truncate=True, order=5, fit_reg=False, scatter_kws={'alpha':0.5}, legend_out=False)
# sns.jointplot(data=pqos_df.groupby('timestamp').sum(), x='LLC Util (KB)', y='MBL (MB/s)', kind="hex", zorder=0)
# .plot_joint(sns.kdeplot, zorder=10, n_levels=25, bw='silverman')
# cpu-cycles,L1-dcache-loads,L1-dcache-load-misses,L1-icache-load-misses,dTLB-load-misses,dTLB-loads,
# iTLB-load-misses,iTLB-loads,branch-misses,context-switches,cpu-migrations,page-faults
# sns.relplot(data=perf_records, x='timestamp', y='context-switches', kind='line', palette=palette, alpha=0.75)
# plt.stackplot(perf_records['timestamp'], perf_records['r4f1'], perf_records['r2f1'], perf_records['r1f1'])
# sns.relplot(data=perf_df, x='context-switches', y='r1f1', kind='scatter', palette=palette, alpha=0.75)
# perf_records['Branch Miss Rate (%)'] = 100.0*perf_records['branch-misses']/perf_records['branches']
# sns.lmplot(data=perf_records, x='context-switches', y='block:block_plug',
# truncate=True, order=8, scatter_kws={'alpha':0.5}, legend_out=False)
# sns.jointplot(data=perf_df, x='dTLB-loads', y='iTLB-loads', kind="hex", zorder=0)
plt.show()
plt.close()
return True