當前位置: 首頁>>代碼示例>>Python>>正文


Python seaborn.jointplot方法代碼示例

本文整理匯總了Python中seaborn.jointplot方法的典型用法代碼示例。如果您正苦於以下問題:Python seaborn.jointplot方法的具體用法?Python seaborn.jointplot怎麽用?Python seaborn.jointplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在seaborn的用法示例。


在下文中一共展示了seaborn.jointplot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: astro_oligo_joint

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def astro_oligo_joint(X, genes, gene1, gene2, labels, focus, name):
    X = X.toarray()

    gidx1 = list(genes).index(gene1)
    gidx2 = list(genes).index(gene2)

    idx = labels == focus

    x1 = X[(idx, gidx1)]
    x2 = X[(idx, gidx2)]

    plt.figure()
    sns.jointplot(
        x1, x2, kind='scatter', space=0, alpha=0.3
    ).plot_joint(sns.kdeplot, zorder=0, n_levels=10)
    plt.savefig('{}_joint_{}_{}_{}.png'.format(name, focus, gene1, gene2)) 
開發者ID:brianhie,項目名稱:geosketch,代碼行數:18,代碼來源:mouse_brain_subcluster.py

示例2: jointplot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def jointplot(self, other, column, **kwargs):
        """
        Generate a seaborn jointplot for given column in asset compared to
        another asset.

        Parameters:
            - other: The other asset's dataframe
            - column: The column name to use for the comparison.
            - kwargs: Keyword arguments to pass down to `sns.pairplot()`

        Returns:
            A seaborn jointplot
        """
        return sns.jointplot(
            x=self.data[column],
            y=other[column],
            **kwargs
        ) 
開發者ID:stefmolin,項目名稱:stock-analysis,代碼行數:20,代碼來源:stock_visualizer.py

示例3: produce_the_kde_plot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def produce_the_kde_plot(cycles, color, save_name):
    ground_truth_and_suggested = [(eval_code.get_best_qed_from_smiles_bag(elem['ground_truth_product']),
                                   eval_code.get_best_qed_from_smiles_bag(elem['suggested_product']))
                                         for elem in cycles]
    len_out = len(ground_truth_and_suggested)
    ground_truth_and_suggested = [elem for elem in ground_truth_and_suggested if elem[1] != -np.inf]
    len_filter = len(ground_truth_and_suggested)
    num_discarding = len_out - len_filter
    if num_discarding:
        warnings.warn(f"Discarding {num_discarding} our of {len_out} as no successful reconstruction")
    ground_truth_and_suggested = np.array(ground_truth_and_suggested)
    ground_truth_product_qed = ground_truth_and_suggested[:, 0]
    suggested_product_qed = ground_truth_and_suggested[:, 1]

    g = sns.jointplot(x=ground_truth_product_qed, y=suggested_product_qed, kind="kde", color=color,
                      )
    g.set_axis_labels("product's QED", "reconstructed product's QED", fontsize=16)
    rsquare = lambda a, b: stats.pearsonr(ground_truth_product_qed, suggested_product_qed)[0] ** 2
    g = g.annotate(rsquare, template="{stat}: {val:.2f}",
                   stat="$R^2$", loc="upper left", fontsize=12)
    print(f"Rsquare: {stats.pearsonr(ground_truth_product_qed, suggested_product_qed)[0] ** 2}")
    print(f"scipystats: {stats.linregress(ground_truth_product_qed, suggested_product_qed)}")
    plt.tight_layout()
    plt.savefig(f"{save_name}.pdf") 
開發者ID:john-bradshaw,項目名稱:molecule-chef,代碼行數:26,代碼來源:create_retrosynthesis_plots.py

示例4: gauss_2d

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def gauss_2d(nsamples=1000):
    """
    Another simple test plot
    1d gaussian sampled from each sampler visualized as a joint 2d gaussian
    """
    gaussian = TestGaussian(ndims=1)
    control = HMCBase(distribution=gaussian)
    experimental = MarkovJumpHMC(distribution=gaussian, resample=False)


    with sns.axes_style("white"):
        sns.jointplot(
            control.sample(nsamples)[0],
            experimental.sample(nsamples)[0],
            kind='hex',
            stat_func=None) 
開發者ID:rueberger,項目名稱:MJHMC,代碼行數:18,代碼來源:plotting.py

示例5: visualize_distribution

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def visualize_distribution(X,prediction,score,path=None):
    """
    Visualize the original density distribution of the data in 2-dimension space.

    Parameters
    ----------
    X: numpy array of shape (n_test, n_features)
        Test data.
    prediction: numpy array of shape (n_test, )
        The prediction result of the test data.
    score: numpy array of shape (n_test, )
        The outlier score of the test data.
    path: string
        The saving path for result figures.
    """

    sns.set(style="ticks")
    X=X.to_numpy()
    X_embedding = TSNE(n_components=2).fit_transform(X)
    sns_plot=sns.jointplot(X_embedding[:,1],X_embedding[:,0], kind="kde", space=0, color="#4CB391")
    if path:
        sns_plot.savefig(path+'/distribution.png')
    plt.show() 
開發者ID:datamllab,項目名稱:pyodds,代碼行數:25,代碼來源:plotUtils.py

示例6: plot_trajectories

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def plot_trajectories(rewards, health, figure_file_obj):
  plt.figure()
  g = sns.jointplot(x=rewards, y=health, kind='kde')
  g.plot_joint(plt.scatter, c='grey', s=30, linewidth=1, marker='+')
  g.ax_joint.collections[0].set_alpha(0)
  g.set_axis_labels('$Reward$', '$Health$')
  if figure_file_obj:
    plt.savefig(figure_file_obj, format='png')
  else:
    plt.show() 
開發者ID:google,項目名稱:ml-fairness-gym,代碼行數:12,代碼來源:evaluation.py

示例7: plot_correlation

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def plot_correlation(x, y, data, title=None, color=None, kind='joint', ax=None):
    # Extract only logP values.
    data = data[[x, y]]

    # Find extreme values to make axes equal.
    min_limit = np.ceil(min(data.min()) - 1)
    max_limit = np.floor(max(data.max()) + 1)
    axes_limits = np.array([min_limit, max_limit])

    if kind == 'joint':
        grid = sns.jointplot(x=x, y=y, data=data,
                             kind='reg', joint_kws={'ci': None}, stat_func=None,
                             xlim=axes_limits, ylim=axes_limits, color=color)
        ax = grid.ax_joint
        grid.fig.subplots_adjust(top=0.95)
        grid.fig.suptitle(title)
    elif kind == 'reg':
        ax = sns.regplot(x=x, y=y, data=data, color=color, ax=ax)
        ax.set_title(title)

    # Add diagonal line.
    ax.plot(axes_limits, axes_limits, ls='--', c='black', alpha=0.8, lw=0.7)

    # Add shaded area for 0.5-1 logP error.
    palette = sns.color_palette('BuGn_r')
    ax.fill_between(axes_limits, axes_limits - 0.5, axes_limits + 0.5, alpha=0.2, color=palette[2])
    ax.fill_between(axes_limits, axes_limits - 1, axes_limits + 1, alpha=0.2, color=palette[3]) 
開發者ID:samplchallenges,項目名稱:SAMPL6,代碼行數:29,代碼來源:logP_analysis.py

示例8: plot_correlation

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def plot_correlation(x, y, data, title=None, color=None, kind='joint', ax=None):
    # Extract only pKa values.
    data = data[[x, y]]

    # Find extreme values to make axes equal.
    min_limit = np.ceil(min(data.min()) - 2)
    max_limit = np.floor(max(data.max()) + 2)
    axes_limits = np.array([min_limit, max_limit])

    if kind == 'joint':
        grid = sns.jointplot(x=x, y=y, data=data,
                             kind='reg', joint_kws={'ci': None}, stat_func=None,
                             xlim=axes_limits, ylim=axes_limits, color=color)
        ax = grid.ax_joint
        grid.fig.subplots_adjust(top=0.95)
        grid.fig.suptitle(title)
    elif kind == 'reg':
        ax = sns.regplot(x=x, y=y, data=data, color=color, ax=ax)
        ax.set_title(title)

    # Add diagonal line.
    ax.plot(axes_limits, axes_limits, ls='--', c='black', alpha=0.8, lw=0.7)

    # Add shaded area for 0.5-1 pKa error.
    palette = sns.color_palette('BuGn_r')
    ax.fill_between(axes_limits, axes_limits - 0.5, axes_limits + 0.5, alpha=0.2, color=palette[2])
    ax.fill_between(axes_limits, axes_limits - 1, axes_limits + 1, alpha=0.2, color=palette[3]) 
開發者ID:samplchallenges,項目名稱:SAMPL6,代碼行數:29,代碼來源:typeIII_analysis.py

示例9: eval1

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def eval1():
  n_observations = 2000  # number of data points
  n_features = 1  # number of features

  X_train, X_test, y_train, y_test = build_econ1_dataset(n_observations)
  print("Size of features in training data: {}".format(X_train.shape))
  print("Size of output in training data: {}".format(y_train.shape))
  print("Size of features in test data: {}".format(X_test.shape))
  print("Size of output in test data: {}".format(y_test.shape))

  fig, ax = plt.subplots()
  fig.set_size_inches(10, 8)
  sns.regplot(X_train, y_train, fit_reg=False)
  # plt.savefig('toydata.png')
  # plt.show()
  # plot.figure.size = 100
  # plt.show()

  kmn = KernelMixtureNetwork(train_scales=True, n_centers=20)
  kmn.fit(X_train, y_train, n_epoch=300, eval_set=(X_test, y_test))
  kmn.plot_loss()
  # plt.savefig('trainplot.png')
  samples = kmn.sample(X_test)
  print(X_test.shape, samples.shape)
  jp = sns.jointplot(X_test.ravel(), samples, kind="hex", stat_func=None, size=10)
  jp.ax_joint.add_line(Line2D([X_test[0][0], X_test[0][0]], [-40, 40], linewidth=3))
  jp.ax_joint.add_line(Line2D([X_test[1][0], X_test[1][0]], [-40, 40], color='g', linewidth=3))
  jp.ax_joint.add_line(Line2D([X_test[2][0], X_test[2][0]], [-40, 40], color='r', linewidth=3))
  plt.savefig('hexplot.png')
  plt.show()
  d = kmn.predict_density(X_test[0:3, :].reshape(-1, 1), resolution=1000)
  df = pd.DataFrame(d).transpose()
  df.index = np.linspace(kmn.y_min, kmn.y_max, num=1000)
  df.plot(legend=False, linewidth=3, figsize=(12.2, 8))
  plt.savefig('conditional_density.png') 
開發者ID:freelunchtheorem,項目名稱:Conditional_Density_Estimation,代碼行數:37,代碼來源:sim_eval.py

示例10: saveMovg

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def saveMovg(df,step=12):
    moving_avg = pd.rolling_mean(df['dsc_log'], step)
    sns.jointplot(x=df['time'],y=moving_avg,color='red')
    plt.title('Moving Average')
    plt.savefig(ma_path)

# 創建word文檔 
開發者ID:liangzp,項目名稱:DQLearning-Toolbox,代碼行數:9,代碼來源:document.py

示例11: plot_euler

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def plot_euler(theta,phi,psi,plot_psi=True):
    sns.jointplot(theta,phi,kind='hex',
              xlim=(-180,180),
              ylim=(0,180)).set_axis_labels("theta", "phi")
    if plot_psi:
        plt.figure()
        plt.hist(psi)
        plt.xlabel('psi') 
開發者ID:zhonge,項目名稱:cryodrgn,代碼行數:10,代碼來源:analysis.py

示例12: hist_2d

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def hist_2d(distr, nsamples, **kwargs):
    """
    Plots a 2d hexbinned histogram of distribution

    Args:
     distr: Distribution object
     nsamples: number of samples to use to generate plot
    """
    sampler = MarkovJumpHMC(distribution=distr, **kwargs)
    samples = sampler.sample(nsamples)

    with sns.axes_style("white"):
       g =  sns.jointplot(samples[0], samples[1], kind='kde', stat_func=None)
    return g 
開發者ID:rueberger,項目名稱:MJHMC,代碼行數:16,代碼來源:plotting.py

示例13: sample_54_1

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def sample_54_1():
    """
    5.4 使用seaborn可視化數據
    :return:
    """
    sns.distplot(tsla_df['p_change'], bins=80)
    plt.show()

    sns.boxplot(x='date_week', y='p_change', data=tsla_df)
    plt.show()

    sns.jointplot(tsla_df['high'], tsla_df['low'])
    plt.show() 
開發者ID:bbfamily,項目名稱:abu,代碼行數:15,代碼來源:c5.py

示例14: plot_pop_resids

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def plot_pop_resids(msm, **kwargs):
    """
    Plot residuals between MSM populations and raw counts.

    Parameters
    ----------
    msm : msmbuilder.msm
        MSMBuilder MarkovStateModel
    **kwargs : dict, optional
        Extra arguments to pass to seaborn.jointplot

    Returns
    -------
    ax : matplotlib axis
        matplotlib figure axis

    """
    if hasattr(msm, 'all_populations_'):
        msm_pop = msm.populations_.mean(0)
    elif hasattr(msm, 'populations_'):
        msm_pop = msm.populations_

    raw_pop = msm.countsmat_.sum(1) / msm.countsmat_.sum()
    ax = sns.jointplot(np.log10(raw_pop), np.log10(msm_pop), kind='resid',
                       **kwargs)
    ax.ax_joint.set_xlabel('Raw Populations', size=20)
    ax.ax_joint.set_ylabel('Residuals', size=20)

    return ax 
開發者ID:msmbuilder,項目名稱:msmexplorer,代碼行數:31,代碼來源:msm.py

示例15: run

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import jointplot [as 別名]
def run(self, params={}):
        # Set styles
        sns.set_palette(params.get('color_palette'))
        sns.set(style=params.get('margin_style'))

        # Process the data and create the plot
        try:
            decoded_data = base64.b64decode(params.get('csv_data'))
        except Exception as e:
            error = f"Failed to decode base64 encoded CSV data with error: {e}"
            self.logger.error(error)
            raise e

        df = pd.read_csv(BytesIO(decoded_data))
        x = params.get('x_value')
        y = params.get('y_value')
        kind = params.get('kind')

        args = {
            "data": df,
            "x": x,
            "y": y,
            "kind": kind
        }

        if not x or (x not in df):
            error = f"Column for X value({x}) not in data set, cannot create plot..."
            self.logger.error(error)
            return Exception(error)
        elif not y or (y not in df):
            error = f"Column for Y value ({y}) not in data set, cannot create plot..."
            self.logger.error(error)
            return Exception(error)

        # JointPlots have the savefig method, call it directly
        self.logger.info("Creating plot...")
        plot = sns.jointplot(**args)

        # bbox_inches is required to ensure that labels are cut off
        plot.savefig('plot.png', bbox_inches='tight')
        with open('plot.png', 'rb', )as f:
            plot = base64.b64encode(f.read())

        return {
            "csv": params.get('csv_data'),
            "plot": plot.decode('utf-8')
        } 
開發者ID:rapid7,項目名稱:insightconnect-plugins,代碼行數:49,代碼來源:action.py


注:本文中的seaborn.jointplot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。