本文整理匯總了Python中seaborn.diverging_palette方法的典型用法代碼示例。如果您正苦於以下問題:Python seaborn.diverging_palette方法的具體用法?Python seaborn.diverging_palette怎麽用?Python seaborn.diverging_palette使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類seaborn
的用法示例。
在下文中一共展示了seaborn.diverging_palette方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _scalars_to_hex_colors
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import diverging_palette [as 別名]
def _scalars_to_hex_colors(scalar_field, start=None, end=None, cmap=None):
"""
Convert scalar values to hex codes using a colormap.
Args:
scalar_field (numpy.ndarray/list): Scalars to convert.
start (float): Scalar value to map to the bottom of the colormap (values below are clipped). (Default is
None, use the minimal scalar value.)
end (float): Scalar value to map to the top of the colormap (values above are clipped). (Default is
None, use the maximal scalar value.)
cmap (matplotlib.cm): The colormap to use. (Default is None, which gives a blue-red divergent map.)
Returns:
(list): The corresponding hex codes for each scalar value passed in.
"""
if start is None:
start = np.amin(scalar_field)
if end is None:
end = np.amax(scalar_field)
interp = interp1d([start, end], [0, 1])
remapped_field = interp(
np.clip(scalar_field, start, end)
) # Map field onto [0,1]
if cmap is None:
try:
from seaborn import diverging_palette
except ImportError:
print(
"The package seaborn needs to be installed for the plot3d() function!"
)
cmap = diverging_palette(245, 15, as_cmap=True) # A nice blue-red palette
return [
rgb2hex(cmap(scalar)[:3]) for scalar in remapped_field
] # The slice gets RGB but leaves alpha
示例2: plot_confusion_matrix
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import diverging_palette [as 別名]
def plot_confusion_matrix(y_test,y_pred, model_name='Model'):
"""
This plots a beautiful confusion matrix based on input: ground truths and predictions
"""
#Confusion Matrix
'''Plotting CONFUSION MATRIX'''
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')
'''Display'''
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:95% !important; }</style>"))
pd.options.display.float_format = '{:,.2f}'.format
#Get the confusion matrix and put it into a df
from sklearn.metrics import confusion_matrix, f1_score
cm = confusion_matrix(y_test, y_pred)
cm_df = pd.DataFrame(cm,
index = np.unique(y_test).tolist(),
columns = np.unique(y_test).tolist(),
)
#Plot the heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(cm_df,
center=0,
cmap=sns.diverging_palette(220, 15, as_cmap=True),
annot=True,
fmt='g')
plt.title(' %s \nF1 Score(avg = micro): %0.2f \nF1 Score(avg = macro): %0.2f' %(
model_name,f1_score(y_test, y_pred, average='micro'),f1_score(y_test, y_pred, average='macro')),
fontsize = 13)
plt.ylabel('True label', fontsize = 13)
plt.xlabel('Predicted label', fontsize = 13)
plt.show();
##############################################################################################
示例3: radiocolorf
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import diverging_palette [as 別名]
def radiocolorf(freq):
ffreq = (float(freq) - 1.0)/(45.0 - 1.0)
pal = sns.diverging_palette(200, 60, l=80, as_cmap=True, center="dark")
return rgb2hex(pal(ffreq))
示例4: plot_classification_matrix
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import diverging_palette [as 別名]
def plot_classification_matrix(y_test, y_pred, model_name='Model'):
"""
This plots a beautiful classification report based on 2 inputs: ground truths and predictions
"""
# Classification Matrix
'''Plotting CLASSIFICATION MATRIX'''
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')
'''Display'''
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:95% !important; }</style>"))
pd.options.display.float_format = '{:,.2f}'.format
#Get the confusion matrix and put it into a df
from sklearn.metrics import precision_score
from sklearn.metrics import classification_report
from sklearn.metrics import precision_score
cm = classification_report(y_test, y_pred,output_dict=True)
cm_df = pd.DataFrame(cm)
#Plot the heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(cm_df,
center=0,
cmap=sns.diverging_palette(220, 15, as_cmap=True),
annot=True,
fmt='0.2f')
plt.title(""" %s
\nAverage Precision Score(avg = micro): %0.2f \nAverage Precision Score(avg = macro): %0.2f""" %(
model_name, precision_score(y_test,y_pred, average='micro'),
precision_score(y_test, y_pred, average='macro')),
fontsize = 13)
plt.ylabel('True label', fontsize = 13)
plt.xlabel('Predicted label', fontsize = 13)
plt.show();
#################################################################################
示例5: plot_corrmat
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import diverging_palette [as 別名]
def plot_corrmat(in_csv, out_file=None):
import seaborn as sn
sn.set(style="whitegrid")
dataframe = pd.read_csv(in_csv, index_col=False, na_values="n/a", na_filter=False)
colnames = dataframe.columns.ravel().tolist()
for col in ["subject_id", "site", "modality"]:
try:
colnames.remove(col)
except ValueError:
pass
# Correlation matrix
corr = dataframe[colnames].corr()
corr = corr.dropna((0, 1), "all")
# Generate a mask for the upper triangle
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
# Generate a custom diverging colormap
cmap = sn.diverging_palette(220, 10, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
corrplot = sn.clustermap(
corr, cmap=cmap, center=0.0, method="average", square=True, linewidths=0.5
)
plt.setp(corrplot.ax_heatmap.yaxis.get_ticklabels(), rotation="horizontal")
# , mask=mask, square=True, linewidths=.5, cbar_kws={"shrink": .5})
if out_file is None:
out_file = "corr_matrix.svg"
fname, ext = op.splitext(out_file)
if ext[1:] not in ["pdf", "svg", "png"]:
ext = ".svg"
out_file = fname + ".svg"
corrplot.savefig(
out_file, format=ext[1:], bbox_inches="tight", pad_inches=0, dpi=100
)
return corrplot
示例6: plot_contrast_matrix
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import diverging_palette [as 別名]
def plot_contrast_matrix(contrast_matrix, ornt='vertical', ax=None):
""" Plot correlation matrix
Parameters
----------
mat : DataFrame
Design matrix with columns consisting of explanatory variables followed
by confounds
n_evs : int
Number of explanatory variables to separate from confounds
partial : {'upper', 'lower', None}, optional
Plot matrix as upper triangular (default), lower triangular or full
Returns
-------
ax : Axes
Axes containing plot
"""
if ax is None:
plt.figure()
ax = plt.gca()
if ornt == 'horizontal':
contrast_matrix = contrast_matrix.T
vmax = np.abs(contrast_matrix.values).max()
# Use a red/blue (+1/-1) diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)
sns.heatmap(contrast_matrix, vmin=-vmax, vmax=vmax, square=True,
linewidths=0.5, cmap=cmap,
cbar_kws={'shrink': 0.5, 'orientation': ornt,
'ticks': np.linspace(-vmax, vmax, 5)},
ax=ax)
# Variables along top and left
ax.xaxis.tick_top()
xtl = ax.get_xticklabels()
ax.set_xticklabels(xtl, rotation=90)
return ax
示例7: write_correlation
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import diverging_palette [as 別名]
def write_correlation(contact_frames, labels, output_file):
# Example adapted from https://seaborn.pydata.org/examples/many_pairwise_correlations.html
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# print(contact_frames)
sns.set(style="white")
# Convert frames to pandas dataframe (rows are time, cols interactions)
rows = max(map(max, contact_frames)) + 1
cols = len(contact_frames)
d = pd.DataFrame(data=np.zeros(shape=(rows, cols)), columns=labels)
for i, contacts in enumerate(contact_frames):
d[labels[i]][contacts] = 1
# print(d)
# Compute the correlation matrix
dmat = d.corr()
np.fill_diagonal(dmat.values, 0)
# vmax = max(vmax, -vmin)
# vmin = min(vmin, -vmax)
vmax = 1
vmin = -1
# print(jac_sim)
# print(vmin, vmax)
# Generate a mask for the upper triangle
mask = np.zeros_like(dmat, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# plt.subplots(figsize=(11, 9))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
hm = sns.heatmap(dmat, mask=mask, cmap=cmap, vmax=vmax, vmin=vmin, center=0, square=True, linewidths=0)
# sns.heatmap(corr, mask=mask, cmap=cmap, vmax=, center=0, square=True, linewidths=0, cbar_kws={"shrink": .5})
f.tight_layout()
print("Writing correlation matrix to", output_file)
f.savefig(output_file)
示例8: write_jaccard
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import diverging_palette [as 別名]
def write_jaccard(contact_frames, labels, output_file):
# Example adapted from https://seaborn.pydata.org/examples/many_pairwise_correlations.html
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# print(contact_frames)
sns.set(style="white")
# Convert frames to pandas dataframe (rows are time, cols interactions)
rows = max(map(max, contact_frames)) + 1
cols = len(contact_frames)
d = pd.DataFrame(data=np.zeros(shape=(rows, cols)), columns=labels)
for i, contacts in enumerate(contact_frames):
d[labels[i]][contacts] = 1
# print(d)
# Compute the correlation matrix
from sklearn.metrics.pairwise import pairwise_distances
jac_sim = 1 - pairwise_distances(d.T, metric="hamming")
jac_sim = pd.DataFrame(jac_sim, index=d.columns, columns=d.columns)
np.fill_diagonal(jac_sim.values, 0)
vmax = max(jac_sim.max())
vmin = min(jac_sim.min())
# vmax = max(vmax, -vmin)
# vmin = min(vmin, -vmax)
vmax = 1
vmin = 0
# print(jac_sim)
# print(vmin, vmax)
# Generate a mask for the upper triangle
mask = np.zeros_like(jac_sim, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# plt.subplots(figsize=(11, 9))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
hm = sns.heatmap(jac_sim, mask=mask, cmap=cmap, vmax=vmax, vmin=vmin, center=0.5, square=True, linewidths=0)
# sns.heatmap(corr, mask=mask, cmap=cmap, vmax=, center=0, square=True, linewidths=0, cbar_kws={"shrink": .5})
f.tight_layout()
print("Writing Jaccard similarity to", output_file)
f.savefig(output_file)
示例9: graphMerge
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import diverging_palette [as 別名]
def graphMerge(num_meanDis_DF):
plt.clf()
import plotly.express as px
from plotly.offline import plot
#01-draw scatter paring
# coore_columns=["number","mean distance","PHMI"]
# fig = px.scatter_matrix(num_meanDis_DF[coore_columns],width=1800, height=800)
# # fig.show() #show in jupyter
# plot(fig)
#02-draw correlation using plt.matshow-A
# Corrcoef=np.corrcoef(np.array(num_meanDis_DF[coore_columns]).transpose()) #sns_columns=["number","mean distance","PHMI"]
# print(Corrcoef)
# plt.matshow(num_meanDis_DF[coore_columns].corr())
# plt.xticks(range(len(coore_columns)), coore_columns)
# plt.yticks(range(len(coore_columns)), coore_columns)
# plt.colorbar()
# plt.show()
#03-draw correlation -B
# Compute the correlation matrix
# plt.clf()
# corr_columns_b=["number","mean distance","PHMI"]
# corr = num_meanDis_DF[corr_columns_b].corr()
corr = num_meanDis_DF.corr()
# # Generate a mask for the upper triangle
# mask = np.triu(np.ones_like(corr, dtype=np.bool))
# # Set up the matplotlib figure
# f, ax = plt.subplots(figsize=(11, 9))
# # Generate a custom diverging colormap
# cmap = sns.diverging_palette(220, 10, as_cmap=True)
# # Draw the heatmap with the mask and correct aspect ratio
# sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,square=True, linewidths=.5, cbar_kws={"shrink": .5})
#04
# Draw a heatmap with the numeric values in each cell
plt.clf()
sns.set()
f, ax = plt.subplots(figsize=(15, 13))
sns.heatmap(corr, annot=True, fmt=".2f", linewidths=.5, ax=ax)
#04-draw curves
# plt.clf()
# sns_columns=["number","mean distance","PHMI"]
# sns.set(rc={'figure.figsize':(25,3)})
# sns.lineplot(data=num_meanDis_DF[sns_columns], palette="tab10", linewidth=2.5)
#rpy2調用R編程,參考:https://rpy2.github.io/doc/v2.9.x/html/introduction.html