當前位置: 首頁>>代碼示例>>Python>>正文


Python seaborn.color_palette方法代碼示例

本文整理匯總了Python中seaborn.color_palette方法的典型用法代碼示例。如果您正苦於以下問題:Python seaborn.color_palette方法的具體用法?Python seaborn.color_palette怎麽用?Python seaborn.color_palette使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在seaborn的用法示例。


在下文中一共展示了seaborn.color_palette方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: zscore_ds_plot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def zscore_ds_plot(training, target, future, corrected):
    labels = ["training", "future", "target", "corrected"]
    colors = {k: c for (k, c) in zip(labels, sns.color_palette("Set2", n_colors=4))}

    alpha = 0.5

    time_target = pd.date_range("1980-01-01", "1989-12-31", freq="D")
    time_training = time_target[~((time_target.month == 2) & (time_target.day == 29))]
    time_future = pd.date_range("1990-01-01", "1999-12-31", freq="D")
    time_future = time_future[~((time_future.month == 2) & (time_future.day == 29))]

    plt.figure(figsize=(8, 4))
    plt.plot(time_training, training.uas, label="training", alpha=alpha, c=colors["training"])
    plt.plot(time_target, target.uas, label="target", alpha=alpha, c=colors["target"])

    plt.plot(time_future, future.uas, label="future", alpha=alpha, c=colors["future"])
    plt.plot(time_future, corrected.uas, label="corrected", alpha=alpha, c=colors["corrected"])

    plt.xlabel("Time")
    plt.ylabel("Eastward Near-Surface Wind (m s-1)")
    plt.legend()

    return 
開發者ID:jhamman,項目名稱:scikit-downscale,代碼行數:25,代碼來源:utils.py

示例2: edge_plot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def edge_plot(ts, filename):
    n = ts.num_samples
    pallete = sns.color_palette("husl", 2 ** n - 1)
    lines = []
    colours = []
    for tree in ts.trees():
        left, right = tree.interval
        for u in tree.nodes():
            children = tree.children(u)
            # Don't bother plotting unary nodes, which will all have the same
            # samples under them as their next non-unary descendant
            if len(children) > 1:
                for c in children:
                    lines.append([(left, c), (right, c)])
                    colours.append(pallete[unrank(tree.samples(c), n)])

    lc = mc.LineCollection(lines, linewidths=2, colors=colours)
    fig, ax = plt.subplots()
    ax.add_collection(lc)
    ax.autoscale()
    save_figure(filename) 
開發者ID:tskit-dev,項目名稱:tsinfer,代碼行數:23,代碼來源:evaluation.py

示例3: plot_sad

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def plot_sad(ax, sat_loss_ti, sat_gain_ti):
  """ Plot loss and gain SAD scores.

    Args:
        ax (Axis): matplotlib axis to plot to.
        sat_loss_ti (L_sm array): Minimum mutation delta across satmut length.
        sat_gain_ti (L_sm array): Maximum mutation delta across satmut length.
    """

  rdbu = sns.color_palette('RdBu_r', 10)

  ax.plot(-sat_loss_ti, c=rdbu[0], label='loss', linewidth=1)
  ax.plot(sat_gain_ti, c=rdbu[-1], label='gain', linewidth=1)
  ax.set_xlim(0, len(sat_loss_ti))
  ax.legend()
  # ax_sad.grid(True, linestyle=':')

  ax.xaxis.set_ticks([])
  for axis in ['top', 'bottom', 'left', 'right']:
    ax.spines[axis].set_linewidth(0.5) 
開發者ID:calico,項目名稱:basenji,代碼行數:22,代碼來源:basenji_sat_h5.py

示例4: plot_solution

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def plot_solution(image_path, model):
    """
    Plot an image with the top 5 class prediction
    :param image_path:
    :param model:
    :return:
    """
    # Set up plot
    plt.figure(figsize=(6, 10))
    ax = plt.subplot(2, 1, 1)
    # Set up title
    flower_num = image_path.split('/')[3]
    title_ = cat_to_name[flower_num]
    # Plot flower
    img = process_image(image_path)
    imshow(img, ax, title=title_);
    # Make prediction
    probs, labs, flowers = predict(image_path, model)
    # Plot bar chart
    plt.subplot(2, 1, 2)
    sns.barplot(x=probs, y=flowers, color=sns.color_palette()[0]);
    plt.show() 
開發者ID:GabrielePicco,項目名稱:deep-learning-flower-identifier,代碼行數:24,代碼來源:flower_classifier.py

示例5: customize

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def customize(func):
    """
    修飾器,設置輸出圖像內容與風格
    """

    @wraps(func)
    def call_w_context(*args, **kwargs):
        set_context = kwargs.pop("set_context", True)
        if set_context:
            color_palette = sns.color_palette("colorblind")
            with plotting_context(), axes_style(), color_palette:
                sns.despine(left=True)
                return func(*args, **kwargs)
        else:
            return func(*args, **kwargs)

    return call_w_context 
開發者ID:QUANTAXIS,項目名稱:QUANTAXIS,代碼行數:19,代碼來源:plotting_utils.py

示例6: _register_colormaps

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def _register_colormaps():
    import matplotlib as mpl
    import seaborn as sns

    c = sns.color_palette('nipy_spectral', 64)[2:43]
    cmap = mpl.colors.LinearSegmentedColormap.from_list('alex_lv', c)
    cmap.set_under(alpha=0)
    mpl.cm.register_cmap(name='alex_lv', cmap=cmap)

    c = sns.color_palette('YlGnBu', 64)[16:]
    cmap = mpl.colors.LinearSegmentedColormap.from_list('alex', c)
    cmap.set_under(alpha=0)
    mpl.cm.register_cmap(name='alex_light', cmap=cmap)
    mpl.cm.register_cmap(name='YlGnBu_crop', cmap=cmap)
    mpl.cm.register_cmap(name='alex_dark', cmap=mpl.cm.GnBu_r)

    # Temporary hack to workaround issue
    # https://github.com/mwaskom/seaborn/issues/855
    mpl.cm.alex_light = mpl.cm.get_cmap('alex_light')
    mpl.cm.alex_dark = mpl.cm.get_cmap('alex_dark')


# Register colormaps on import if not mocking 
開發者ID:tritemio,項目名稱:FRETBursts,代碼行數:25,代碼來源:burst_plot.py

示例7: vals2colors

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def vals2colors(vals, cmap='GnBu_d',res=100):
    """Maps values to colors
    Args:
    values (list or list of lists) - list of values to map to colors
    cmap (str) - color map (default is 'husl')
    res (int) - resolution of the color map (default: 100)
    Returns:
    list of rgb tuples
    """
    # flatten if list of lists
    if any(isinstance(el, list) for el in vals):
        vals = list(itertools.chain(*vals))

    # get palette from seaborn
    palette = np.array(sns.color_palette(cmap, res))
    ranks = np.digitize(vals, np.linspace(np.min(vals), np.max(vals)+1, res+1)) - 1
    return [tuple(i) for i in palette[ranks, :]] 
開發者ID:ContextLab,項目名稱:hypertools,代碼行數:19,代碼來源:helpers.py

示例8: plot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def plot(self):
        r'''
        Plots the history of the lr and momentum evolution as a function of iterations
        '''

        with sns.axes_style(self.plot_settings.style), sns.color_palette(self.plot_settings.cat_palette):
            fig, axs = plt.subplots(2, 1, figsize=(self.plot_settings.w_mid, self.plot_settings.h_mid))
            axs[1].set_xlabel("Iterations", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
            axs[0].set_ylabel("Learning Rate", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
            axs[1].set_ylabel("Momentum", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
            axs[0].plot(range(len(self.hist['lr'])), self.hist['lr'])
            axs[1].plot(range(len(self.hist['mom'])), self.hist['mom'])
            for ax in axs:
                ax.tick_params(axis='x', labelsize=self.plot_settings.tk_sz, labelcolor=self.plot_settings.tk_col)
                ax.tick_params(axis='y', labelsize=self.plot_settings.tk_sz, labelcolor=self.plot_settings.tk_col)
            plt.show() 
開發者ID:GilesStrong,項目名稱:lumin,代碼行數:18,代碼來源:cyclic_callbacks.py

示例9: plot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def plot(self, n_skip:int=0, n_max:Optional[int]=None, lim_y:Optional[Tuple[float,float]]=None) -> None:
        r'''
        Plot the loss as a function of the LR.

        Arguments:
            n_skip: Number of initial iterations to skip in plotting
            n_max: Maximum iteration number to plot
            lim_y: y-range for plotting
        '''

        # TODO: Decide on whether to keep this; could just pass to plot_lr_finders

        with sns.axes_style(self.plot_settings.style), sns.color_palette(self.plot_settings.cat_palette):
            plt.figure(figsize=(self.plot_settings.w_mid, self.plot_settings.h_mid))
            plt.plot(self.history['lr'][n_skip:n_max], self.history['loss'][n_skip:n_max], label='Training loss', color='g')
            if np.log10(self.lr_bounds[1])-np.log10(self.lr_bounds[0]) >= 3: plt.xscale('log')
            plt.ylim(lim_y)
            plt.grid(True, which="both")
            plt.legend(loc=self.plot_settings.leg_loc, fontsize=self.plot_settings.leg_sz)
            plt.xticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col)
            plt.yticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col)
            plt.ylabel("Loss", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
            plt.xlabel("Learning rate", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
            plt.show() 
開發者ID:GilesStrong,項目名稱:lumin,代碼行數:26,代碼來源:opt_callbacks.py

示例10: plot_architectures

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def plot_architectures(df, save_cfg=cfg.saving_config):
    """Plot bar graph showing the architectures used in the study.
    """
    fig, ax = plt.subplots(figsize=(save_cfg['text_width'] / 3, 
                                    save_cfg['text_width'] / 3))
    colors = sns.color_palette()
    counts = df['Architecture (clean)'].value_counts()
    _, _, pct = ax.pie(counts.values, labels=counts.index, autopct='%1.1f%%',
           wedgeprops=dict(width=0.3, edgecolor='w'), colors=colors,
           pctdistance=0.55)
    for i in pct:
        i.set_fontsize(5)

    ax.axis('equal')
    plt.tight_layout()

    if save_cfg is not None:
        fname = os.path.join(save_cfg['savepath'], 'architectures')
        fig.savefig(fname + '.' + save_cfg['format'], **save_cfg)

    return ax 
開發者ID:hubertjb,項目名稱:dl-eeg-review,代碼行數:23,代碼來源:analysis.py

示例11: plot_embeddings

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def plot_embeddings(self, embeddings):
        embeddings = MinMaxScaler((0, 1)).fit_transform(self.embeddings)

        fig = plt.figure()
        buf = io.BytesIO()
        sns.scatterplot(x=embeddings[:, 0], y=embeddings[:, 1], s=1,
                        hue=self.labels,
                        palette=sns.color_palette("hls", self.n_classes),
                        linewidth=0)

        plt.savefig(buf, format='png', dpi=300)
        plt.close(fig)
        buf.seek(0)

        image = tf.Summary.Image(encoded_image_string=buf.getvalue())
        return image 
開發者ID:beringresearch,項目名稱:ivis,代碼行數:18,代碼來源:callbacks.py

示例12: _prepare_fig_labels

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def _prepare_fig_labels(data, labels):
    '''Helper function for settiing up animation canvas
    '''
    # we choose a color palette with seaborn.
    max_label = labels.max()
    palette = np.array(sns.color_palette("hls", max_label+1))
    # we create a scatter plot.

    # we add the labels for each digit.
    t, b, d = data.shape
    data = data.transpose(1, 0, 2).reshape((t*b, d))
    labels = labels[np.newaxis].repeat(t, axis=0).transpose(1, 0)
    labels = labels.flatten()

    fig = plt.figure(figsize=(8, 8))
    return labels, palette, fig 
開發者ID:AgnezIO,項目名稱:agnez,代碼行數:18,代碼來源:embedding.py

示例13: format_colors

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def format_colors(feature_metadata, category, color_palette):
    colors = []
    annotations = feature_metadata[category].unique()
    color_map = values_to_colors(annotations, color_palette)

    colors.append('TREE_COLORS')
    colors.append('SEPARATOR TAB')
    colors.append('DATA')

    for idx in feature_metadata.index:
        color = color_map[feature_metadata.loc[idx, category]]

        if feature_metadata.loc[idx, 'structure_source'] == 'MS2':
            style, width = 'normal', 6
        else:
            style, width = 'dashed', 4

        colors.append('%s\tclade\t%s\t%s\t%s' % (idx, color, style, width))

    return '\n'.join(colors) 
開發者ID:biocore,項目名稱:q2-qemistree,代碼行數:22,代碼來源:_plot.py

示例14: plot

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def plot(x, y, plot_id, names=None):
    viz_df = pd.DataFrame(data=x[:5000])
    viz_df['Label'] = y[:5000]
    if names is not None:
        viz_df['Label'] = viz_df['Label'].map(names)

    viz_df.to_csv(args.save_dir + '/' + args.dataset + '.csv')
    plt.subplots(figsize=(8, 5))
    sns.scatterplot(x=0, y=1, hue='Label', legend='full', hue_order=sorted(viz_df['Label'].unique()),
                    palette=sns.color_palette("hls", n_colors=args.n_clusters),
                    alpha=.5,
                    data=viz_df)
    l = plt.legend(bbox_to_anchor=(-.1, 1.00, 1.1, .5), loc="lower left", markerfirst=True,
                   mode="expand", borderaxespad=0, ncol=args.n_clusters + 1, handletextpad=0.01, )

    l.texts[0].set_text("")
    plt.ylabel("")
    plt.xlabel("")
    plt.tight_layout()
    plt.savefig(args.save_dir + '/' + args.dataset +
                '-' + plot_id + '.png', dpi=300)
    plt.clf() 
開發者ID:rymc,項目名稱:n2d,代碼行數:24,代碼來源:n2d.py

示例15: _parse_heatmap_metadata_annotations

# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import color_palette [as 別名]
def _parse_heatmap_metadata_annotations(metadata_column, margin_palette):
    '''
    Transform feature or sample metadata into color vector for annotating
    margin of clustermap.
    Parameters
    ----------
    metadata_column: pd.Series of metadata for annotating plots
    margin_palette: str
        Name of color palette to use for annotating metadata
        along margin(s) of clustermap.
    Returns
    -------
    Returns vector of colors for annotating clustermap and dict mapping colors
    to classes.
    '''
    # Create a categorical palette to identify md col
    metadata_column = metadata_column.astype(str)
    col_names = sorted(metadata_column.unique())

    # Select Color palette
    if margin_palette == 'colorhelix':
        col_palette = sns.cubehelix_palette(
            len(col_names), start=2, rot=3, dark=0.3, light=0.8, reverse=True)
    else:
        col_palette = sns.color_palette(margin_palette, len(col_names))
    class_colors = dict(zip(col_names, col_palette))

    # Convert the palette to vectors that will be drawn on the matrix margin
    col_colors = metadata_column.map(class_colors)

    return col_colors, class_colors 
開發者ID:biocore,項目名稱:mmvec,代碼行數:33,代碼來源:heatmap.py


注:本文中的seaborn.color_palette方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。