本文整理匯總了Python中seaborn.clustermap方法的典型用法代碼示例。如果您正苦於以下問題:Python seaborn.clustermap方法的具體用法?Python seaborn.clustermap怎麽用?Python seaborn.clustermap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類seaborn
的用法示例。
在下文中一共展示了seaborn.clustermap方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _normalize_table
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def _normalize_table(table, method):
'''
Normalize column data in a dataframe for plotting in clustermap.
table: pd.DataFrame
Input data.
method: str
Normalization method to use.
Returns normalized table as pd.DataFrame
'''
if 'col' in method:
axis = 0
elif 'row' in method:
axis = 1
if 'z_score' in method:
res = table.apply(lambda x: (x - x.mean()) / x.std(), axis=axis)
elif 'rel' in method:
res = table.apply(lambda x: x / x.sum(), axis=axis)
elif method == 'log10':
res = table.apply(lambda x: np.log10(x + 1))
return res.fillna(0)
示例2: clustermap
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def clustermap(gene_values, out_pdf, color=None, table=False):
""" Generate a clustered heatmap using seaborn. """
if table:
np.save(out_pdf[:-4], gene_values)
plt.figure()
g = sns.clustermap(
gene_values,
metric='euclidean',
cmap=color,
xticklabels=False,
yticklabels=False)
g.ax_heatmap.set_xlabel('Experiments')
g.ax_heatmap.set_ylabel('Genes')
plt.savefig(out_pdf)
plt.close()
示例3: main
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def main():
args = parser.parse_args()
data = pd.read_table(args.tsv, index_col=args.row if args.row else 0, sep=args.delimiter, encoding='utf-8')
if args.cols:
try:
data = data.loc[:,args.cols.split(',')]
except KeyError:
data = data.iloc[:,[int(i)-1 for i in args.cols.split(',')]]
if len(data.columns) > 50:
raise BaseException('Too many columns')
data = np.log2(data) if args.log_normalize else data
data[data==-1*np.inf] = data[data!=-1*np.inf].min().min()
width = 5+0 if len(data.columns)<50 else (len(data.columns)-50)/100
row_cutoff = 1000
height = 15+0 if len(data)<row_cutoff else (len(data)-row_cutoff)/75.0
seaborn_map = sns.clustermap(data, figsize=(width, height))
seaborn_map.savefig('{}_heatmap.png'.format(os.path.split(args.tsv.name)[1]))
seaborn_map.data2d.to_csv('{}_heatmap.tsv'.format(os.path.split(args.tsv.name)[1]), sep='\t')
示例4: plot_heatmap
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def plot_heatmap(outpath, df, sample_linkage, sample_colors, event_linkage, desc, sample_color_lut):
assert desc.lower().startswith('altsplice') or desc.lower().startswith('expression')
is_altsplice = desc.lower().startswith('altsplice')
sys.setrecursionlimit(100000)
print "Plotting data ... "
graph = sns.clustermap(df.T,
col_colors=sample_colors,
col_linkage=sample_linkage, row_linkage=event_linkage,
cmap = sns.cubehelix_palette(as_cmap=True))
graph.ax_heatmap.axis('off')
graph.ax_col_dendrogram.set_title("%s Clustering" %' '.join(desc.split('_')).title())
graph.ax_heatmap.set_xlabel("Events")
graph.ax_heatmap.set_ylabel("Samples")
if is_altsplice: graph.cax.set_title("psi")
else: graph.cax.set_title("log(counts)")
add_legend(graph, sample_color_lut)
plot_utils.save(outpath)
return
示例5: plot_corr_matrix
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def plot_corr_matrix(self, save_path=None, show_chart=True, cmap='vlag', linewidth=0, figsize=(10, 10)):
"""
Plots the correlation matrix
:param save_path: local directory to save file. If provided, saves a png of the image to the address.
:param show_chart: If True, shows the chart.
:param cmap: matplotlib colormap.
:param linewidth: witdth of the grid lines of the correlation matrix.
:param figsize: tuple with figsize dimensions.
"""
sns.clustermap(self.corr, method=self.method, metric=self.metric, cmap=cmap,
figsize=figsize, linewidths=linewidth,
col_linkage=self.link, row_linkage=self.link)
plt.tight_layout()
if not (save_path is None):
plt.savefig(save_path,
pad_inches=1,
dpi=400)
if show_chart:
plt.show()
plt.close()
示例6: __call__
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def __call__(self, data, path):
colorbar, factors, unique, xkcd = self.getColorBar(data)
n_samples = data.shape[0]
data = data.iloc[:, :n_samples]
col_dict = dict(list(zip(unique, xkcd)))
print(data.head())
seaborn.set(font_scale=.5)
ax = seaborn.clustermap(data,
row_colors=colorbar, col_colors=colorbar)
plt.setp(ax.ax_heatmap.yaxis.set_visible(False))
for label in unique:
ax.ax_col_dendrogram.bar(
0, 0, color=seaborn.xkcd_rgb[col_dict[label]],
label=label, linewidth=0)
ax.ax_col_dendrogram.legend(loc="center", ncol=len(unique))
return ResultBlocks(ResultBlock(
'''#$mpl %i$#\n''' % ax.cax.figure.number,
title='ClusterMapPlot'))
示例7: _parse_heatmap_metadata_annotations
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def _parse_heatmap_metadata_annotations(metadata_column, margin_palette):
'''
Transform feature or sample metadata into color vector for annotating
margin of clustermap.
Parameters
----------
metadata_column: pd.Series of metadata for annotating plots
margin_palette: str
Name of color palette to use for annotating metadata
along margin(s) of clustermap.
Returns
-------
Returns vector of colors for annotating clustermap and dict mapping colors
to classes.
'''
# Create a categorical palette to identify md col
metadata_column = metadata_column.astype(str)
col_names = sorted(metadata_column.unique())
# Select Color palette
if margin_palette == 'colorhelix':
col_palette = sns.cubehelix_palette(
len(col_names), start=2, rot=3, dark=0.3, light=0.8, reverse=True)
else:
col_palette = sns.color_palette(margin_palette, len(col_names))
class_colors = dict(zip(col_names, col_palette))
# Convert the palette to vectors that will be drawn on the matrix margin
col_colors = metadata_column.map(class_colors)
return col_colors, class_colors
示例8: _parse_taxonomy_strings
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def _parse_taxonomy_strings(taxonomy_series, level):
'''
taxonomy_series: pd.Series of semicolon-delimited taxonomy strings
level: int
taxonomic level for annotating clustermap.
Returns
-------
Returns a pd.Series of taxonomy names at specified level,
or terminal annotation
'''
return taxonomy_series.apply(lambda x: x.split(';')[:level][-1].strip())
示例9: plot_clustermap
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def plot_clustermap(D, xticklabels=None, yticklabels=None):
import seaborn as sns
if xticklabels is None: xticklabels = range(D.shape[0])
if yticklabels is None: yticklabels = range(D.shape[1])
zmat = sns.clustermap(
D, yticklabels=yticklabels, xticklabels=xticklabels,
linewidths=0.2, cmap='BuGn')
plt.setp(zmat.ax_heatmap.get_yticklabels(), rotation=0)
plt.setp(zmat.ax_heatmap.get_xticklabels(), rotation=90)
return zmat
示例10: plot_target_corr
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def plot_target_corr(filter_outs, seq_targets, filter_names, target_names, out_pdf, seq_op='mean'):
num_seqs = filter_outs.shape[0]
num_targets = len(target_names)
if seq_op == 'mean':
filter_outs_seq = filter_outs.mean(axis=2)
else:
filter_outs_seq = filter_outs.max(axis=2)
# std is sequence by filter.
filter_seqs_std = filter_outs_seq.std(axis=0)
filter_outs_seq = filter_outs_seq[:, filter_seqs_std > 0]
filter_names_live = filter_names[filter_seqs_std > 0]
filter_target_cors = np.zeros((len(filter_names_live), num_targets))
for fi in range(len(filter_names_live)):
for ti in range(num_targets):
cor, p = spearmanr(filter_outs_seq[:, fi], seq_targets[:num_seqs, ti])
filter_target_cors[fi, ti] = cor
cor_df = pd.DataFrame(
filter_target_cors, index=filter_names_live, columns=target_names)
sns.set(font_scale=0.3)
plt.figure()
sns.clustermap(cor_df, cmap='BrBG', center=0, figsize=(8, 10))
plt.savefig(out_pdf)
plt.close()
################################################################################
# plot_filter_seq_heat
#
# Plot a clustered heatmap of filter activations in
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
示例11: cluster_heatmap
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def cluster_heatmap(data, clusters, target, plot_name=None, **kwargs):
"""
Visualizes feature usage with heatmap.
Parameters
--------
data: pd.DataFrame
Feature matrix.
clusters: np.array
Array of cluster IDs.
target: np.array
Boolean vector, if ``True``, then user has `positive_target_event` in trajectory.
plot_name: str, optional
Name of plot to save. Default: ``'clusters_heatmap_{timestamp}.svg'``
Returns
-------
Saves plot to ``retention_config.experiments_folder``
Return type
-------
PNG
"""
heatmap = sns.clustermap(data.values,
cmap="BrBG",
xticklabels=data.columns,
yticklabels=False,
row_cluster=True,
col_cluster=False)
heatmap.ax_row_dendrogram.set_visible(False)
heatmap = heatmap.ax_heatmap
plot_name = plot_name or 'cluster_heatmap_{}'.format(datetime.now()).replace(':', '_').replace('.', '_') + '.svg'
plot_name = data.retention.retention_config['experiments_folder'] + '/' + plot_name
return heatmap, plot_name, None, data.retention.retention_config
示例12: expression_clustermap
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def expression_clustermap(counts, freq=0.8):
scols,ncols = base.get_column_names(counts)
X = counts.set_index('name')[ncols]
X = np.log(X)
v = X.std(1).sort_values(ascending=False)
X = X[X.isnull().sum(1)/len(X.columns)<0.2]
X = X.fillna(0)
cg = sns.clustermap(X,cmap='YlGnBu',figsize=(12,12),lw=0,linecolor='gray')
mt = plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation=0, fontsize=9)
mt = plt.setp(cg.ax_heatmap.xaxis.get_majorticklabels(), rotation=90)
return cg
示例13: cluster_map
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def cluster_map(data, names):
"""Cluster map of genes"""
import seaborn as sns
import pylab as plt
data = data.ix[names]
X = np.log(data).fillna(0)
X = X.apply(lambda x: x-x.mean(), 1)
cg = sns.clustermap(X,cmap='RdYlBu_r',figsize=(8,10),lw=.5,linecolor='gray')
mt=plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
mt=plt.setp(cg.ax_heatmap.xaxis.get_majorticklabels(), rotation=90)
return cg
示例14: plot_heatmap
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def plot_heatmap(psi_df, meta_df, outpath):
# Sort by cancer type
psi_df = psi_df.copy().loc[meta_df['cnc'].sort_values().index]
psi_df = psi_df.iloc[:, psi_df.columns.map(lambda x: _decode_event_name(x)[1]).argsort()]
col_colors, col_cmap_lut = _get_heatmap_col_colors(psi_df)
row_colors, row_cmap_lut = _get_heatmap_row_colors(meta_df, psi_df.index)
method = 'ward'; metric = 'cosine'
graph = sns.clustermap(psi_df, cmap='Purples',
row_colors=row_colors, col_colors=col_colors,
row_cluster=False, col_cluster=False,
xticklabels=psi_df.columns.map(lambda x:_decode_event_name(x)[2]),
linewidths=0,
mask=psi_df.isnull())
_override_sns_row_colors(graph, row_colors.values)
graph.ax_heatmap.set_yticks([])
graph.ax_heatmap.set_xlabel("Events")
graph.ax_heatmap.set_ylabel("Samples")
graph.cax.set_title("psi")
tumor_only_row_cmap_lut = {key:val for key,val in row_cmap_lut.items() if not 'Normal' in key}
plotter.add_legend(graph, tumor_only_row_cmap_lut)
plotter.add_col_legend(graph, col_cmap_lut)
print "Writing: %s" %outpath
plt.savefig(outpath, bbox_inches='tight')
pdf_outpath = re.sub('.png$', '.pdf', outpath)
print "Writing: %s" %pdf_outpath
#plt.savefig(pdf_outpath, bbox_inches='tight')
plt.close()
return
示例15: __init__
# 需要導入模塊: import seaborn [as 別名]
# 或者: from seaborn import clustermap [as 別名]
def __init__(self, path, games, logger, suffix):
super(WordCoocurence, self).__init__(path, self.__class__.__name__, suffix)
questions = []
word_counter = collections.Counter()
NO_WORDS_TO_DISPLAY = 50
for game in games:
# split questions into words
for q in game.questions:
questions.append(q)
q = re.sub('[?]', '', q)
words = re.findall(r'\w+', q)
for w in words:
word_counter[w.lower()] += 1
# compute word co-coocurrence
common_words = word_counter.most_common(NO_WORDS_TO_DISPLAY)
common_words = [pair[0] for pair in common_words]
corrmat = np.zeros((NO_WORDS_TO_DISPLAY, NO_WORDS_TO_DISPLAY))
# compute the correlation matrices
for i, question in enumerate(questions):
for word in question:
if word in common_words:
for other_word in question:
if other_word in common_words:
if word != other_word:
corrmat[common_words.index(word)][common_words.index(other_word)] += 1.
# Display the cor matrix
df = pd.DataFrame(data=corrmat, index=common_words, columns=common_words)
f = sns.clustermap(df, standard_scale=0, col_cluster=False, row_cluster=True, cbar_kws={"label": "co-occurence"})
f.ax_heatmap.xaxis.tick_top()
plt.setp(f.ax_heatmap.get_xticklabels(), rotation=90)
plt.setp(f.ax_heatmap.get_yticklabels(), rotation=0)