當前位置: 首頁>>代碼示例>>Python>>正文


Python scipy.where方法代碼示例

本文整理匯總了Python中scipy.where方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.where方法的具體用法?Python scipy.where怎麽用?Python scipy.where使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy的用法示例。


在下文中一共展示了scipy.where方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: getLeadingEigenvector

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def getLeadingEigenvector(A, normalized=True, lanczosVecs = 15, maxiter = 1000):
        """Compute normalized leading eigenvector of a given matrix A.

        @param A: sparse matrix for which leading eigenvector will be computed
        @param normalized: wheter or not to normalize. Default is C{True}
        @param lanczosVecs: number of Lanczos vectors to be used in the approximate
            calculation of eigenvectors and eigenvalues. This maps to the ncv parameter 
            of scipy's underlying function eigs. 
        @param maxiter: scaling factor for the number of iterations to be used in the 
            approximate calculation of eigenvectors and eigenvalues. The number of iterations 
            passed to scipy's underlying eigs function will be n*maxiter where n is the 
            number of rows/columns of the Laplacian matrix.
        """

        if _sparse.issparse(A) == False:
            raise TypeError("A must be a sparse matrix")

        # NOTE: ncv sets additional auxiliary eigenvectors that are computed
        # NOTE: in order to be more confident to find the one with the largest
        # NOTE: magnitude, see https://github.com/scipy/scipy/issues/4987
        w, pi = _sla.eigs( A, k=1, which="LM", ncv=lanczosVecs, maxiter=maxiter)
        pi = pi.reshape(pi.size,)
        if normalized:
            pi /= sum(pi)
        return pi 
開發者ID:IngoScholtes,項目名稱:pathpy,代碼行數:27,代碼來源:HigherOrderNetwork.py

示例2: getAlgebraicConnectivity

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def getAlgebraicConnectivity(self, lanczosVecs = 15, maxiter = 20):
        """
        Returns the algebraic connectivity of the higher-order network.    
        
        @param lanczosVecs: number of Lanczos vectors to be used in the approximate
            calculation of eigenvectors and eigenvalues. This maps to the ncv parameter 
            of scipy's underlying function eigs. 
        @param maxiter: scaling factor for the number of iterations to be used in the 
            approximate calculation of eigenvectors and eigenvalues. The number of iterations 
            passed to scipy's underlying eigs function will be n*maxiter where n is the
            number of rows/columns of the Laplacian matrix.         
        """
    
        Log.add('Calculating algebraic connectivity ... ', Severity.INFO)

        L = self.getLaplacianMatrix()
        # NOTE: ncv sets additional auxiliary eigenvectors that are computed
        # NOTE: in order to be more confident to find the one with the largest
        # NOTE: magnitude, see https://github.com/scipy/scipy/issues/4987
        w = _sla.eigs( L, which="SM", k=2, ncv=lanczosVecs, return_eigenvectors=False, maxiter = maxiter )
        evals_sorted = _np.sort(_np.absolute(w))

        Log.add('finished.', Severity.INFO)

        return _np.abs(evals_sorted[1]) 
開發者ID:IngoScholtes,項目名稱:pathpy,代碼行數:27,代碼來源:HigherOrderNetwork.py

示例3: get_concentration_functions

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def get_concentration_functions(composition_table_dict):

    meta = composition_table_dict["meta"]
    composition_table = Table.from_dict(composition_table_dict["data"])
    elements = [col for col in composition_table.columns if col not in meta]
    x = composition_table["X"].values
    y = composition_table["Y"].values
    cats = composition_table["X"].unique()
    concentration, conc, d, y_c, functions = {}, {}, {}, {}, RecursiveDict()

    for el in elements:
        concentration[el] = to_numeric(composition_table[el].values) / 100.0
        conc[el], d[el], y_c[el] = {}, {}, {}

        if meta["X"] == "category":
            for i in cats:
                k = "{:06.2f}".format(float(i))
                y_c[el][k] = to_numeric(y[where(x == i)])
                conc[el][k] = to_numeric(concentration[el][where(x == i)])
                d[el][k] = interp1d(y_c[el][k], conc[el][k])

            functions[el] = lambda a, b, el=el: d[el][a](b)

        else:
            functions[el] = interp2d(float(x), float(y), concentration[el])

    return functions 
開發者ID:materialsproject,項目名稱:MPContribs,代碼行數:29,代碼來源:pre_submission.py

示例4: mycount_garrick

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def mycount_garrick(V):
	f=s.zeros((n_bin, n_bin, n_bin))
	Vsum=V[:,s.newaxis]+V[s.newaxis,:] # matrix with the sum of the volumes in the bins
	for k in xrange(1,(n_bin-1)):
		f[:,:,k]=s.where((Vsum<=V[k+1]) & (Vsum>=V[k]), (V[k+1]-Vsum)/(V[k+1]-V[k]),\
		f[:,:,k] )
		f[:,:,k]=s.where((Vsum<=V[k]) & (Vsum>=V[k-1]),(Vsum-V[k-1])/(V[k]-V[k-1]),\
		f[:,:,k])
	
	return f 
開發者ID:ActiveState,項目名稱:code,代碼行數:12,代碼來源:recipe-576547.py

示例5: pixSeedfillBinary

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def pixSeedfillBinary(self, Imask, Iseed):
        Iseedfill = copy.deepcopy(Iseed)
        s = ones((3, 3))
        Ijmask, k = ndimage.label(Imask, s)
        Ijmask2 = Ijmask * Iseedfill
        A = list(unique(Ijmask2))
        A.remove(0)
        for i in range(0, len(A)):
            x, y = where(Ijmask == A[i])
            Iseedfill[x, y] = 1
        return Iseedfill 
開發者ID:OCR-D,項目名稱:ocrd_anybaseocr,代碼行數:13,代碼來源:ocrd_anybaseocr_tiseg.py

示例6: pagerank

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def pagerank(graph_matrix, n_iter=100, alpha=0.9, tol=1e-6):
    n_nodes = graph_matrix.shape[0]
    n_edges_per_node = graph_matrix.sum(axis=1)
    n_edges_per_node = np.array(n_edges_per_node).flatten()

    np.seterr(divide='ignore')
    normilize_vector = np.where((n_edges_per_node != 0),
                                1. / n_edges_per_node, 0)
    np.seterr(divide='warn')

    normilize_matrix = sp.spdiags(normilize_vector, 0,
                                  *graph_matrix.shape, format='csr')

    graph_proba_matrix = normilize_matrix * graph_matrix

    teleport_proba = np.repeat(1. / n_nodes, n_nodes)
    is_dangling, = scipy.where(normilize_vector == 0)

    x_current = teleport_proba
    for _ in range(n_iter):
        x_previous = x_current.copy()

        dangling_total_proba = sum(x_current[is_dangling])
        x_current = (
            x_current * graph_proba_matrix +
            dangling_total_proba * teleport_proba
        )
        x_current = alpha * x_current + (1 - alpha) * teleport_proba

        error = np.abs(x_current - x_previous).mean()
        if error < tol:
            break

    else:
        print("PageRank didn't converge")

    return x_current 
開發者ID:itdxer,項目名稱:neupy,代碼行數:39,代碼來源:pagerank.py

示例7: getFiedlerVectorSparse

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def getFiedlerVectorSparse(self, normalized = True, lanczosVecs = 15, maxiter = 20):
        """Returns the (sparse) Fiedler vector of the higher-order network. The Fiedler 
        vector can be used for a spectral bisectioning of the network.
     
        Note that sparse linear algebra for eigenvalue problems with small eigenvalues 
        is problematic in terms of numerical stability. Consider using the dense version
        of this method in this case. Note also that the sparse Fiedler vector might be scaled by 
        a factor (-1) compared to the dense version.
          
        @param normalized: whether (default) or not to normalize the fiedler vector.
          Normalization is done such that the sum of squares equals one in order to
          get reasonable values as entries might be positive and negative.
        @param lanczosVecs: number of Lanczos vectors to be used in the approximate
            calculation of eigenvectors and eigenvalues. This maps to the ncv parameter 
            of scipy's underlying function eigs. 
        @param maxiter: scaling factor for the number of iterations to be used in the 
            approximate calculation of eigenvectors and eigenvalues. The number of iterations 
            passed to scipy's underlying eigs function will be n*maxiter where n is the 
            number of rows/columns of the Laplacian matrix.
        """
    
        # NOTE: The transposed matrix is needed to get the "left" eigenvectors
        L = self.getLaplacianMatrix()

        # NOTE: ncv sets additional auxiliary eigenvectors that are computed
        # NOTE: in order to be more confident to find the one with the largest
        # NOTE: magnitude, see https://github.com/scipy/scipy/issues/4987
        maxiter = maxiter*L.get_shape()[0]
        w = _sla.eigs( L, k=2, which="SM", ncv=lanczosVecs, return_eigenvectors=False, maxiter=maxiter )
    
        # compute a sparse LU decomposition and solve for the eigenvector 
        # corresponding to the second largest eigenvalue
        n = L.get_shape()[0]
        b = _np.ones(n)
        evalue = _np.sort(_np.abs(w))[1]
        A = (L[1:n,:].tocsc()[:,1:n] - _sparse.identity(n-1).multiply(evalue))
        b[1:n] = A[0,:].toarray()
    
        lu = _sla.splu(A)
        b[1:n] = lu.solve(b[1:n])

        if normalized:
            b /= np.sqrt(np.inner(b, b))
        return b 
開發者ID:IngoScholtes,項目名稱:pathpy,代碼行數:46,代碼來源:HigherOrderNetwork.py

示例8: gen_feature_nodearray

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def gen_feature_nodearray(xi, feature_max=None):
	if feature_max:
		assert(isinstance(feature_max, int))

	xi_shift = 0 # ensure correct indices of xi
	if scipy and isinstance(xi, tuple) and len(xi) == 2\
			and isinstance(xi[0], scipy.ndarray) and isinstance(xi[1], scipy.ndarray): # for a sparse vector
		index_range = xi[0] + 1 # index starts from 1
		if feature_max:
			index_range = index_range[scipy.where(index_range <= feature_max)]
	elif scipy and isinstance(xi, scipy.ndarray):
		xi_shift = 1
		index_range = xi.nonzero()[0] + 1 # index starts from 1
		if feature_max:
			index_range = index_range[scipy.where(index_range <= feature_max)]
	elif isinstance(xi, (dict, list, tuple)):
		if isinstance(xi, dict):
			index_range = xi.keys()
		elif isinstance(xi, (list, tuple)):
			xi_shift = 1
			index_range = range(1, len(xi) + 1)
		index_range = filter(lambda j: xi[j-xi_shift] != 0, index_range)

		if feature_max:
			index_range = filter(lambda j: j <= feature_max, index_range)
		index_range = sorted(index_range)
	else:
		raise TypeError('xi should be a dictionary, list, tuple, 1-d numpy array, or tuple of (index, data)')

	ret = (feature_node*(len(index_range)+2))()
	ret[-1].index = -1 # for bias term
	ret[-2].index = -1

	if scipy and isinstance(xi, tuple) and len(xi) == 2\
			and isinstance(xi[0], scipy.ndarray) and isinstance(xi[1], scipy.ndarray): # for a sparse vector
		for idx, j in enumerate(index_range):
			ret[idx].index = j
			ret[idx].value = (xi[1])[idx]
	else:
		for idx, j in enumerate(index_range):
			ret[idx].index = j
			ret[idx].value = xi[j - xi_shift]

	max_idx = 0
	if len(index_range) > 0:
		max_idx = index_range[-1]
	return ret, max_idx 
開發者ID:AudioVisualEmotionChallenge,項目名稱:AVEC2018,代碼行數:49,代碼來源:liblinear.py

示例9: laplacian_matrix

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def laplacian_matrix(G, nodelist=None, weight='weight'):
    """Return the Laplacian matrix of G.

    The graph Laplacian is the matrix L = D - A, where
    A is the adjacency matrix and D is the diagonal matrix of node degrees.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    L : SciPy sparse matrix
      The Laplacian matrix of G.

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.

    See Also
    --------
    to_numpy_matrix
    normalized_laplacian_matrix
    """
    import scipy.sparse
    if nodelist is None:
        nodelist = G.nodes()
    A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight,
                                  format='csr')
    n,m = A.shape
    diags = A.sum(axis=1)
    D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format='csr')
    return  D - A 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:44,代碼來源:laplacianmatrix.py

示例10: laplacian_matrix

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def laplacian_matrix(G, nodelist=None, weight='weight'):
    """Returns the Laplacian matrix of G.

    The graph Laplacian is the matrix L = D - A, where
    A is the adjacency matrix and D is the diagonal matrix of node degrees.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    L : SciPy sparse matrix
      The Laplacian matrix of G.

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.

    See Also
    --------
    to_numpy_matrix
    normalized_laplacian_matrix
    """
    import scipy.sparse
    if nodelist is None:
        nodelist = list(G)
    A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight,
                                  format='csr')
    n, m = A.shape
    diags = A.sum(axis=1)
    D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format='csr')
    return D - A 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:44,代碼來源:laplacianmatrix.py

示例11: laplacian_matrix

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import where [as 別名]
def laplacian_matrix(G, nodelist=None, weight='weight'):
    """Return the Laplacian matrix of G.

    The graph Laplacian is the matrix L = D - A, where
    A is the adjacency matrix and D is the diagonal matrix of node degrees.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    L : SciPy sparse matrix
      The Laplacian matrix of G.

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.

    See Also
    --------
    to_numpy_matrix
    normalized_laplacian_matrix
    """
    import scipy.sparse
    if nodelist is None:
        nodelist = list(G)
    A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight,
                                  format='csr')
    n, m = A.shape
    diags = A.sum(axis=1)
    D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format='csr')
    return D - A 
開發者ID:aws-samples,項目名稱:aws-kube-codesuite,代碼行數:44,代碼來源:laplacianmatrix.py


注:本文中的scipy.where方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。