本文整理匯總了Python中scipy.sum方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.sum方法的具體用法?Python scipy.sum怎麽用?Python scipy.sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy
的用法示例。
在下文中一共展示了scipy.sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: coupling_optim_garrick
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def coupling_optim_garrick(y,t):
creation=s.zeros(n_bin)
destruction=s.zeros(n_bin)
#now I try to rewrite this in a more optimized way
destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\
#the destruction of k-mers
for k in xrange(n_bin):
kyn = (kernel*f_garrick[:,:,k])*y[:,s.newaxis]*y[s.newaxis,:]
creation[k] = s.sum(kyn)
creation=0.5*creation
out=creation+destruction
return out
#Now I work with the function for espressing smoluchowski equation when a uniform grid is used
示例2: coupling_optim
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def coupling_optim(y,t):
creation=s.zeros(n_bin)
destruction=s.zeros(n_bin)
#now I try to rewrite this in a more optimized way
destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\
#the destruction of k-mers
kyn = kernel*y[:,s.newaxis]*y[s.newaxis,:]
for k in xrange(n_bin):
creation[k] = s.sum(kyn[s.arange(k),k-s.arange(k)-1])
creation=0.5*creation
out=creation+destruction
return out
#Now I go for the optimal optimization of the chi_{i,j,k} coefficients used by Garrick for
# dealing with a non-uniform grid.
示例3: __MR_W_D_matrix
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def __MR_W_D_matrix(self,img,labels):
s = sp.amax(labels)+1
vect = self.__MR_superpixel_mean_vector(img,labels)
adj = self.__MR_get_adj_loop(labels)
W = sp.spatial.distance.squareform(sp.spatial.distance.pdist(vect))
W = sp.exp(-1*W / self.weight_parameters['delta'])
W[adj.astype(np.bool)] = 0
D = sp.zeros((s,s)).astype(float)
for i in range(s):
D[i, i] = sp.sum(W[i])
return W,D
示例4: CalculateWeiner
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def CalculateWeiner(mol):
"""
#################################################################
Calculation of Weiner number in a molecule
---->W
Usage:
result=CalculateWeiner(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
return 1.0 / 2 * sum(sum(Chem.GetDistanceMatrix(mol)))
示例5: CalculatePolarityNumber
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def CalculatePolarityNumber(mol):
"""
#################################################################
Calculation of Polarity number.
It is the number of pairs of vertexes at
distance matrix equal to 3
---->Pol
Usage:
result=CalculatePolarityNumber(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
Distance = Chem.GetDistanceMatrix(mol)
res = 1.0 / 2 * sum(sum(Distance == 3))
return res
示例6: CalculateHarary
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def CalculateHarary(mol):
"""
#################################################################
Calculation of Harary number
---->Thara
Usage:
result=CalculateHarary(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
Distance = numpy.array(Chem.GetDistanceMatrix(mol), "d")
return 1.0 / 2 * (sum(1.0 / Distance[Distance != 0]))
示例7: CalculateSchiultz
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def CalculateSchiultz(mol):
"""
#################################################################
Calculation of Schiultz number
---->Tsch(log value)
Usage:
result=CalculateSchiultz(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
Distance = numpy.array(Chem.GetDistanceMatrix(mol), "d")
Adjacent = numpy.array(Chem.GetAdjacencyMatrix(mol), "d")
VertexDegree = sum(Adjacent)
return sum(scipy.dot((Distance + Adjacent), VertexDegree))
示例8: CalculateZagreb1
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def CalculateZagreb1(mol):
"""
#################################################################
Calculation of Zagreb index with order 1 in a molecule
---->ZM1
Usage:
result=CalculateZagreb1(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
deltas = [x.GetDegree() for x in mol.GetAtoms()]
return sum(numpy.array(deltas) ** 2)
示例9: CalculateZagreb2
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def CalculateZagreb2(mol):
"""
#################################################################
Calculation of Zagreb index with order 2 in a molecule
---->ZM2
Usage:
result=CalculateZagreb2(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
ke = [
x.GetBeginAtom().GetDegree() * x.GetEndAtom().GetDegree()
for x in mol.GetBonds()
]
return sum(ke)
示例10: CalculateMZagreb2
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def CalculateMZagreb2(mol):
"""
#################################################################
Calculation of Modified Zagreb index with order 2 in a molecule
---->MZM2
Usage:
result=CalculateMZagreb2(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
cc = [
x.GetBeginAtom().GetDegree() * x.GetEndAtom().GetDegree()
for x in mol.GetBonds()
]
while 0 in cc:
cc.remove(0)
cc = numpy.array(cc, "d")
res = sum((1.0 / cc) ** 2)
return res
示例11: CalculatePlatt
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def CalculatePlatt(mol):
"""
#################################################################
Calculation of Platt number in a molecule
---->Platt
Usage:
result=CalculatePlatt(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
cc = [
x.GetBeginAtom().GetDegree() + x.GetEndAtom().GetDegree() - 2
for x in mol.GetBonds()
]
return sum(cc)
示例12: CalculateHarmonicTopoIndex
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def CalculateHarmonicTopoIndex(mol):
"""
#################################################################
Calculation of harmonic topological index proposed by Narnumi.
---->Hato
Usage:
result=CalculateHarmonicTopoIndex(mol)
Input: mol is a molecule object
Output: result is a numeric value
#################################################################
"""
deltas = [x.GetDegree() for x in mol.GetAtoms()]
while 0 in deltas:
deltas.remove(0)
deltas = numpy.array(deltas, "d")
nAtoms = mol.GetNumAtoms()
res = nAtoms / sum(1.0 / deltas)
return res
示例13: compare_images
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def compare_images(img1, img2, method='zeronorm'):
# normalize to compensate for exposure difference, this may be unnecessary
# consider disabling it
img1 = normalize(img1)
img2 = normalize(img2)
# calculate the difference and its norms
diff = img1 - img2 # elementwise for scipy arrays
if method in 'zeronorm':
inorm = norm(diff.ravel(), 0) # Zero norm
else:
inorm = sum(abs(diff)) # Manhattan norm
#normalise by image size
inorm /= float(img1.size)
return inorm
#################################################################################
示例14: error
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def error(f, x, y):
return sp.sum((f(x) - y) ** 2)
開發者ID:PacktPublishing,項目名稱:Building-Machine-Learning-Systems-With-Python-Second-Edition,代碼行數:4,代碼來源:analyze_webstats.py
示例15: __minowski_low_positive_integer_p
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import sum [as 別名]
def __minowski_low_positive_integer_p(h1, h2, p = 2): # 11..43 us for p = 1..24 \w 100 bins
"""
A faster implementation of the Minowski distance for positive integer < 25.
@note do not use this function directly, but the general @link minowski() method.
@note the passed histograms must be scipy arrays.
"""
mult = scipy.absolute(h1 - h2)
dif = mult
for _ in range(p - 1): dif = scipy.multiply(dif, mult)
return math.pow(scipy.sum(dif), 1./p)