當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.zscore方法代碼示例

本文整理匯總了Python中scipy.stats.zscore方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.zscore方法的具體用法?Python stats.zscore怎麽用?Python stats.zscore使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.zscore方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_zscore_axis

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def test_zscore_axis(self):
        # Test use of 'axis' keyword in zscore.
        x = np.array([[0.0, 0.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 2.0],
                      [2.0, 0.0, 2.0, 0.0]])

        t1 = 1.0/np.sqrt(2.0/3)
        t2 = np.sqrt(3.)/3
        t3 = np.sqrt(2.)

        z0 = stats.zscore(x, axis=0)
        z1 = stats.zscore(x, axis=1)

        z0_expected = [[-t1, -t3/2, -t3/2, 0.0],
                       [0.0, t3, -t3/2, t1],
                       [t1, -t3/2, t3, -t1]]
        z1_expected = [[-1.0, -1.0, 1.0, 1.0],
                       [-t2, -t2, -t2, np.sqrt(3.)],
                       [1.0, -1.0, 1.0, -1.0]]

        assert_array_almost_equal(z0, z0_expected)
        assert_array_almost_equal(z1, z1_expected) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:24,代碼來源:test_stats.py

示例2: get_external_state

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def get_external_state(self):
        # Use Hi-Low median as signal:
        x = (
            np.frombuffer(self.data.high.get(size=self.time_dim)) +
            np.frombuffer(self.data.low.get(size=self.time_dim))
        ) / 2

        # Differences along time dimension:
        d_x = np.gradient(x, axis=0) * self.p.cwt_signal_scale

        # Compute continuous wavelet transform using Ricker wavelet:
        cwt_x = signal.cwt(d_x, signal.ricker, self.cwt_width).T

        # Note: differences taken once again along channels axis,
        # apply weighted scaling to normalize channels
        norm_x = np.gradient(cwt_x, axis=-1)
        norm_x = zscore(norm_x, axis=0) * self.p.state_ext_scale
        #out_x = tanh(norm_x)
        out_x = np.clip(norm_x, -10, 10)

        return out_x[:, None, :] 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:23,代碼來源:strategy_gen_2.py

示例3: test_zscore

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def test_zscore(self):
        for n in self.get_n():
            x, y, xm, ym = self.generate_xy_sample(n)

            #reference solution
            zx = (x - x.mean()) / x.std()
            zy = (y - y.mean()) / y.std()

            #validate stats
            assert_allclose(stats.zscore(x), zx, rtol=1e-10)
            assert_allclose(stats.zscore(y), zy, rtol=1e-10)

            #compare stats and mstats
            assert_allclose(stats.zscore(x), stats.mstats.zscore(xm[0:len(x)]),
                            rtol=1e-10)
            assert_allclose(stats.zscore(y), stats.mstats.zscore(ym[0:len(y)]),
                            rtol=1e-10) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:19,代碼來源:test_mstats_basic.py

示例4: efficient_corr

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def efficient_corr(x, y):
    """
    Computes correlation of matching columns in `x` and `y`

    Parameters
    ----------
    x, y : (N, M) array_like
        Input data arrays

    Returns
    -------
    corr : (M,) numpy.ndarray
        Correlations of columns in `x` and `y`
    """

    corr = np.sum(zscore(x, ddof=1) * zscore(y, ddof=1), axis=0) / (len(x) - 1)

    return corr 
開發者ID:rmarkello,項目名稱:abagen,代碼行數:20,代碼來源:utils.py

示例5: neural_sorting

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def neural_sorting(self,i):
        if i==0:
            self.isort = np.argsort(self.u[:,int(self.PCedit.text())-1])
        elif i==1:
            self.isort = self.isort1
        if i<2:
            self.spF = gaussian_filter1d(self.sp[np.ix_(self.isort,self.tsort)].T,
                                        np.minimum(8,np.maximum(1,int(self.sp.shape[0]*0.005))),
                                        axis=1)
            self.spF = self.spF.T
        else:
            self.spF = self.sp
        self.spF = zscore(self.spF, axis=1)
        self.spF = np.minimum(8, self.spF)
        self.spF = np.maximum(-4, self.spF) + 4
        self.spF /= 12
        self.img.setImage(self.spF)
        self.ROI_position() 
開發者ID:MouseLand,項目名稱:suite2p,代碼行數:20,代碼來源:visualize.py

示例6: ks_refine

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def ks_refine(varr, seeds, sig=0.05):
    print("selecting seeds")
    varr_sub = varr.sel(
        spatial=[tuple(hw) for hw in seeds[['height', 'width']].values])
    print("performing KS test")
    ks = xr.apply_ufunc(
        lambda x: kstest(zscore(x), 'norm')[1],
        varr_sub.chunk(dict(frame=-1, spatial='auto')),
        input_core_dims=[['frame']],
        vectorize=True,
        dask='parallelized',
        output_dtypes=[float])
    mask = ks < sig
    mask_df = mask.to_pandas().rename('mask_ks').reset_index()
    seeds = pd.merge(seeds, mask_df, on=['height', 'width'], how='left')
    return seeds 
開發者ID:DeniseCaiLab,項目名稱:minian,代碼行數:18,代碼來源:initialization.py

示例7: center

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def center(X):
    r"""
    Subtracts the row means and divides by the row standard deviations.
    Then subtracts column means.

    Parameters
    ----------
    X : array-like, shape (n_observations, n_features)
        The data to preprocess

    Returns
    -------
    centered_X : preprocessed data matrix
    """

    # Mean along rows using sample mean and sample std
    centered_X = stats.zscore(X, axis=1, ddof=1)
    # Mean along columns
    mu = np.mean(centered_X, axis=0)
    centered_X -= mu
    return centered_X 
開發者ID:neurodata,項目名稱:mvlearn,代碼行數:23,代碼來源:gcca.py

示例8: score

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def score(self, Z, U, zscore=False):
        """
        Compute classification error on test set.

        Parameters
        ----------
        Z : array
            new data set (M samples x D features)
        zscore : boolean
            whether to transform the data using z-scoring (def: false)

        Returns
        -------
        preds : array
            label predictions (M samples x 1)

        """
        # If classifier is trained, check for same dimensionality
        if self.is_trained:
            if not self.train_data_dim == Z.shape[1]:
                raise ValueError("""Test data is of different dimensionality
                                 than training data.""")

        # Make predictions
        preds = self.predict(Z, zscore=zscore)

        # Compute error
        return np.mean(preds != U) 
開發者ID:wmkouw,項目名稱:libTLDA,代碼行數:30,代碼來源:suba.py

示例9: predict

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def predict(self, Z, zscore=False):
        """
        Make predictions on new dataset.

        Parameters
        ----------
        Z : array
            new data set (M samples x D features)
        zscore : boolean
            whether to transform the data using z-scoring (def: false)

        Returns
        -------
        preds : array
            label predictions (M samples x 1)

        """
        # If classifier is trained, check for same dimensionality
        if self.is_trained:
            if not self.train_data_dim == Z.shape[1]:
                raise ValueError("""Test data is of different dimensionality
                                 than training data.""")

        # Call predict_proba() for posterior probabilities
        probs = self.predict_proba(Z, zscore=zscore)

        # Take maximum over classes for indexing class list
        preds = self.K[np.argmax(probs, axis=1)]

        # Return predictions array
        return preds 
開發者ID:wmkouw,項目名稱:libTLDA,代碼行數:33,代碼來源:suba.py

示例10: get_outliers

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def get_outliers(self, y):
        return absolute(zscore(y)) > self.threshold 
開發者ID:ewels,項目名稱:MegaQC,代碼行數:4,代碼來源:outlier.py

示例11: randmvn

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def randmvn(rho, size=(1, 2), standardize=False):
    '''create random draws from equi-correlated multivariate normal distribution

    Parameters
    ----------
    rho : float
        correlation coefficient
    size : tuple of int
        size is interpreted (nobs, nvars) where each row

    Returns
    -------
    rvs : ndarray
        nobs by nvars where each row is a independent random draw of nvars-
        dimensional correlated rvs

    '''
    nobs, nvars = size
    if 0 < rho and rho < 1:
        rvs = np.random.randn(nobs, nvars+1)
        rvs2 = rvs[:,:-1] * np.sqrt((1-rho)) + rvs[:,-1:] * np.sqrt(rho)
    elif rho ==0:
        rvs2 = np.random.randn(nobs, nvars)
    elif rho < 0:
        if rho < -1./(nvars-1):
            raise ValueError('rho has to be larger than -1./(nvars-1)')
        elif rho == -1./(nvars-1):
            rho = -1./(nvars-1+1e-10)  #barely positive definite
        #use Cholesky
        A = rho*np.ones((nvars,nvars))+(1-rho)*np.eye(nvars)
        rvs2 = np.dot(np.random.randn(nobs, nvars), np.linalg.cholesky(A).T)
    if standardize:
        rvs2 = stats.zscore(rvs2)
    return rvs2

#============================
#
# Part 2: Multiple comparisons and independent samples tests
#
#============================ 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:42,代碼來源:multicomp.py

示例12: test_standardize1

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def test_standardize1():

    np.random.seed(123)
    x = 1 + np.random.randn(5, 4)

    transf = StandardizeTransform(x)
    xs1 = transf(x)

    assert_allclose(transf.mean, x.mean(0), rtol=1e-13)
    assert_allclose(transf.scale, x.std(0, ddof=1), rtol=1e-13)

    xs2 = stats.zscore(x, ddof=1)
    assert_allclose(xs1, xs2, rtol=1e-13, atol=1e-20)

    # check we use stored transformation
    xs4 = transf(2 * x)
    assert_allclose(xs4, (2*x - transf.mean) / transf.scale, rtol=1e-13, atol=1e-20)


    # affine transform doesn't change standardized
    x2 = 2 * x + np.random.randn(4)
    transf2 = StandardizeTransform(x2)
    xs3 = transf2(x2)
    assert_allclose(xs3, xs1, rtol=1e-13, atol=1e-20)

    # check constant
    x5 = np.column_stack((np.ones(x.shape[0]), x))
    transf5 = StandardizeTransform(x5)
    xs5 = transf5(x5)

    assert_equal(transf5.const_idx, 0)
    assert_equal(xs5[:, 0], np.ones(x.shape[0]))
    assert_allclose(xs5[:, 1:], xs1, rtol=1e-13, atol=1e-20) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:35,代碼來源:test_transform_model.py

示例13: get_external_state

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def get_external_state(self):
        # Use Hi-Low median as signal:
        x = (
            np.frombuffer(self.data.high.get(size=self.time_dim)) +
            np.frombuffer(self.data.low.get(size=self.time_dim))
        ) / 2

        # Differences along time dimension:
        d_x = np.gradient(x, axis=0) * self.p.cwt_signal_scale

        # Compute continuous wavelet transform using Ricker wavelet:
        cwt_x = signal.cwt(d_x, signal.ricker, self.cwt_width).T

        norm_x = cwt_x

        # Note: differences taken once again along channels axis,
        # apply weighted scaling to normalize channels
        # norm_x = np.gradient(cwt_x, axis=-1)
        # norm_x = zscore(norm_x, axis=0) * self.p.state_ext_scale
        # norm_x *= self.p.state_ext_scale

        out_x = tanh(norm_x)

        # out_x = np.clip(norm_x, -10, 10)

        # return out_x[:, None, :]
        return out_x[..., None] 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:29,代碼來源:strategy.py

示例14: get_external_2_state

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def get_external_2_state(self):
        x = np.stack(
            [
                np.frombuffer(self.data.high.get(size=self.time_dim)),
                np.frombuffer(self.data.open.get(size=self.time_dim)),
                np.frombuffer(self.data.low.get(size=self.time_dim)),
                np.frombuffer(self.data.close.get(size=self.time_dim)),
            ],
            axis=-1
        )
        # # Differences along features dimension:
        d_x = np.gradient(x, axis=-1) * self.p.cwt_signal_scale

        # Compute continuous wavelet transform using Ricker wavelet:
        # cwt_x = signal.cwt(d_x, signal.ricker, self.cwt_width).T

        norm_x = d_x

        # Note: differences taken once again along channels axis,
        # apply weighted scaling to normalize channels
        # norm_x = np.gradient(cwt_x, axis=-1)
        # norm_x = zscore(norm_x, axis=0) * self.p.state_ext_scale
        # norm_x *= self.p.state_ext_scale

        out_x = tanh(norm_x)

        # out_x = np.clip(norm_x, -10, 10)

        return out_x[:, None, :] 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:31,代碼來源:strategy.py

示例15: get_single_external_state

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import zscore [as 別名]
def get_single_external_state(self, key):
        # Use Hi-Low median as signal:
        x = (
                    np.frombuffer(self.data_streams[key].high.get(size=self.time_dim)) +
                    np.frombuffer(self.data_streams[key].low.get(size=self.time_dim))
            ) / 2

        # Differences along time dimension:
        d_x = np.gradient(x, axis=0) * self.p.cwt_signal_scale

        # Compute continuous wavelet transform using Ricker wavelet:
        cwt_x = signal.cwt(d_x, signal.ricker, self.cwt_width).T

        norm_x = cwt_x

        # Note: differences taken once again along channels axis,
        # apply weighted scaling to normalize channels
        # norm_x = np.gradient(cwt_x, axis=-1)
        # norm_x = zscore(norm_x, axis=0) * self.p.state_ext_scale
        norm_x *= self.p.state_ext_scale[key]

        out_x = tanh(norm_x)

        # out_x = np.clip(norm_x, -10, 10)

        # return out_x[:, None, :]
        return out_x[:, None, :] 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:29,代碼來源:strategy.py


注:本文中的scipy.stats.zscore方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。