當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.wasserstein_distance方法代碼示例

本文整理匯總了Python中scipy.stats.wasserstein_distance方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.wasserstein_distance方法的具體用法?Python stats.wasserstein_distance怎麽用?Python stats.wasserstein_distance使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.wasserstein_distance方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: aggtest

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def aggtest(self, f, colname, numbins=0, binsize="auto", debug=False, plot=True, bound=True, exact=False):
        """
        Verification of SQL aggregation mechanisms
        Returns statistical distance measures between repeated analysis 
        responses on neighboring datasets
        """
        d1, d2, d1_metadata, d2_metadata = self.generate_neighbors()
        fD1, fD2 = self.apply_aggregation_neighbors(f, (d1, colname), (d2, colname))
        d1size, d2size = fD1.size, fD2.size
        ks_res = self.ks_test(fD1, fD2)
        d1hist, d2hist, bin_edges = \
            self.generate_histogram_neighbors(fD1, fD2, numbins, binsize, exact=exact)
        dp_res, d1histupperbound, d2histupperbound, d1lower, d2lower = self.dp_test(d1hist, d2hist, bin_edges, d1size, d2size, debug, exact=exact)
        ws_res = 0.0
        if(exact):
            return False, 0.0, 0.0
        else:
            ws_res = self.wasserstein_distance(d1hist, d2hist)

        if(plot):
            self.plot_histogram_neighbors(fD1, fD2, d1histupperbound, d2histupperbound, d1hist, d2hist, d1lower, d2lower, bin_edges, bound, exact)
        return dp_res, ks_res, ws_res 
開發者ID:opendifferentialprivacy,項目名稱:whitenoise-system,代碼行數:24,代碼來源:_dp_verification.py

示例2: test_emd_1d_emd2_1d

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_emd_1d_emd2_1d():
    # test emd1d gives similar results as emd
    n = 20
    m = 30
    rng = np.random.RandomState(0)
    u = rng.randn(n, 1)
    v = rng.randn(m, 1)

    M = ot.dist(u, v, metric='sqeuclidean')

    G, log = ot.emd([], [], M, log=True)
    wass = log["cost"]
    G_1d, log = ot.emd_1d(u, v, [], [], metric='sqeuclidean', log=True)
    wass1d = log["cost"]
    wass1d_emd2 = ot.emd2_1d(u, v, [], [], metric='sqeuclidean', log=False)
    wass1d_euc = ot.emd2_1d(u, v, [], [], metric='euclidean', log=False)

    # check loss is similar
    np.testing.assert_allclose(wass, wass1d)
    np.testing.assert_allclose(wass, wass1d_emd2)

    # check loss is similar to scipy's implementation for Euclidean metric
    wass_sp = wasserstein_distance(u.reshape((-1,)), v.reshape((-1,)))
    np.testing.assert_allclose(wass_sp, wass1d_euc)

    # check constraints
    np.testing.assert_allclose(np.ones((n,)) / n, G.sum(1))
    np.testing.assert_allclose(np.ones((m,)) / m, G.sum(0))

    # check G is similar
    np.testing.assert_allclose(G, G_1d)

    # check AssertionError is raised if called on non 1d arrays
    u = np.random.randn(n, 2)
    v = np.random.randn(m, 2)
    with pytest.raises(AssertionError):
        ot.emd_1d(u, v, [], []) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:39,代碼來源:test_ot.py

示例3: test_emd_1d_emd2_1d_with_weights

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_emd_1d_emd2_1d_with_weights():
    # test emd1d gives similar results as emd
    n = 20
    m = 30
    rng = np.random.RandomState(0)
    u = rng.randn(n, 1)
    v = rng.randn(m, 1)

    w_u = rng.uniform(0., 1., n)
    w_u = w_u / w_u.sum()

    w_v = rng.uniform(0., 1., m)
    w_v = w_v / w_v.sum()

    M = ot.dist(u, v, metric='sqeuclidean')

    G, log = ot.emd(w_u, w_v, M, log=True)
    wass = log["cost"]
    G_1d, log = ot.emd_1d(u, v, w_u, w_v, metric='sqeuclidean', log=True)
    wass1d = log["cost"]
    wass1d_emd2 = ot.emd2_1d(u, v, w_u, w_v, metric='sqeuclidean', log=False)
    wass1d_euc = ot.emd2_1d(u, v, w_u, w_v, metric='euclidean', log=False)

    # check loss is similar
    np.testing.assert_allclose(wass, wass1d)
    np.testing.assert_allclose(wass, wass1d_emd2)

    # check loss is similar to scipy's implementation for Euclidean metric
    wass_sp = wasserstein_distance(u.reshape((-1,)), v.reshape((-1,)), w_u, w_v)
    np.testing.assert_allclose(wass_sp, wass1d_euc)

    # check constraints
    np.testing.assert_allclose(w_u, G.sum(1))
    np.testing.assert_allclose(w_v, G.sum(0)) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:36,代碼來源:test_ot.py

示例4: test_distinct_value_and_weight_lengths

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_distinct_value_and_weight_lengths(self):
        # When the number of weights does not match the number of values,
        # a ValueError should be raised.
        assert_raises(ValueError, stats.wasserstein_distance,
                      [1], [2], [4], [3, 1])
        assert_raises(ValueError, stats.wasserstein_distance, [1], [2], [1, 0]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:8,代碼來源:test_stats.py

示例5: test_zero_weight

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_zero_weight(self):
        # When a distribution is given zero weight, a ValueError should be
        # raised.
        assert_raises(ValueError, stats.wasserstein_distance,
                      [0, 1], [2], [0, 0])
        assert_raises(ValueError, stats.wasserstein_distance,
                      [0, 1], [2], [3, 1], [0]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:test_stats.py

示例6: test_negative_weights

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_negative_weights(self):
        # A ValueError should be raised if there are any negative weights.
        assert_raises(ValueError, stats.wasserstein_distance,
                      [0, 1], [2, 2], [1, 1], [3, -1]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:6,代碼來源:test_stats.py

示例7: test_empty_distribution

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_empty_distribution(self):
        # A ValueError should be raised when trying to measure the distance
        # between something and nothing.
        assert_raises(ValueError, stats.wasserstein_distance, [], [2, 2])
        assert_raises(ValueError, stats.wasserstein_distance, [1], []) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:7,代碼來源:test_stats.py

示例8: test_inf_weight

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_inf_weight(self):
        # An inf weight is not valid.
        assert_raises(ValueError, stats.wasserstein_distance,
                      [1, 2, 1], [1, 1], [1, np.inf, 1], [1, 1]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:6,代碼來源:test_stats.py

示例9: test_same_distribution

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_same_distribution(self):
        # Any distribution moved to itself should have a Wasserstein distance of
        # zero.
        assert_equal(stats.wasserstein_distance([1, 2, 3], [2, 1, 3]), 0)
        assert_equal(
            stats.wasserstein_distance([1, 1, 1, 4], [4, 1],
                                       [1, 1, 1, 1], [1, 3]),
            0) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:10,代碼來源:test_stats.py

示例10: test_shift

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_shift(self):
        # If the whole distribution is shifted by x, then the Wasserstein
        # distance should be x.
        assert_almost_equal(stats.wasserstein_distance([0], [1]), 1)
        assert_almost_equal(stats.wasserstein_distance([-5], [5]), 10)
        assert_almost_equal(
            stats.wasserstein_distance([1, 2, 3, 4, 5], [11, 12, 13, 14, 15]),
            10)
        assert_almost_equal(
            stats.wasserstein_distance([4.5, 6.7, 2.1], [4.6, 7, 9.2],
                                       [3, 1, 1], [1, 3, 1]),
            2.5) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:14,代碼來源:test_stats.py

示例11: test_combine_weights

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_combine_weights(self):
        # Assigning a weight w to a value is equivalent to including that value
        # w times in the value array with weight of 1.
        assert_almost_equal(
            stats.wasserstein_distance(
                [0, 0, 1, 1, 1, 1, 5], [0, 3, 3, 3, 3, 4, 4],
                [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]),
            stats.wasserstein_distance([5, 0, 1], [0, 4, 3],
                                       [1, 2, 4], [1, 2, 4])) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:11,代碼來源:test_stats.py

示例12: test_collapse

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def test_collapse(self):
        # Collapsing a distribution to a point distribution at zero is
        # equivalent to taking the average of the absolute values of the values.
        u = np.arange(-10, 30, 0.3)
        v = np.zeros_like(u)
        assert_almost_equal(
            stats.wasserstein_distance(u, v),
            np.mean(np.abs(u)))

        u_weights = np.arange(len(u))
        v_weights = u_weights[::-1]
        assert_almost_equal(
            stats.wasserstein_distance(u, v, u_weights, v_weights),
            np.average(np.abs(u), weights=u_weights)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:16,代碼來源:test_stats.py

示例13: peste_distance

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def peste_distance(self) -> np.ndarray:
        """Calculates the euclidean distance between pixels of two different arrays
        on a vector of observations, and normalizes the result applying the relativize function.
        In a more general scenario, any function that quantifies the notion of "how different two
        observations are" could work, even if it is not a proper distance.
        """
        # Get random companion
        peste_obs = self.get_peste_obs()
        # Euclidean distance between states (pixels / RAM)
        # obs = self.observations.astype(np.float32).reshape((self.n_walkers, -1))
        dist = self.wasserstein_distance(np.array(self.observations), peste_obs)
        return relativize_vector(dist) 
開發者ID:Guillemdb,項目名稱:FractalAI,代碼行數:14,代碼來源:dnn_train.py

示例14: wasserstein_distance

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def wasserstein_distance(x, y):
        def entropy_dist(x, y):
            def hernandez_crossentropy(x, y):
                return 1 + np.log(np.prod(2 - x ** y, axis=2))

            first = hernandez_crossentropy(x, y).mean(axis=1)
            sec = hernandez_crossentropy(y, x).mean(axis=1)
            return np.maximum(first, sec)

        def _wasserstein_distance(x, y):
            from scipy import stats

            def stacked_distance(x, y):
                distances = []
                for i in range(x.shape[0]):
                    dist_val = stats.wasserstein_distance(x[i], y[i])
                    distances.append(dist_val)
                return np.array(distances)

            distances = []
            for i in range(x.shape[0]):
                dist_val = stacked_distance(x[i], y[i]).mean()
                distances.append(dist_val)
            return np.array(distances)

        return _wasserstein_distance(x, y) 
開發者ID:Guillemdb,項目名稱:FractalAI,代碼行數:28,代碼來源:dnn_train.py

示例15: evaluate_distance

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import wasserstein_distance [as 別名]
def evaluate_distance(self) -> np.ndarray:
        """Calculates the euclidean distance between pixels of two different arrays
        on a vector of observations, and normalizes the result applying the relativize function.
        In a more general scenario, any function that quantifies the notion of "how different two
        observations are" could work, even if it is not a proper distance.
        """

        # Get random companion
        idx = np.random.permutation(np.arange(self.n_walkers, dtype=int))
        # Euclidean distance between states (pixels / RAM)
        obs = self.observations.astype(np.float32)
        dist = self.wasserstein_distance(obs[idx], obs)  # ** 2
        return relativize_vector(dist) 
開發者ID:Guillemdb,項目名稱:FractalAI,代碼行數:15,代碼來源:dnn_train.py


注:本文中的scipy.stats.wasserstein_distance方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。