本文整理匯總了Python中scipy.stats.vonmises方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.vonmises方法的具體用法?Python stats.vonmises怎麽用?Python stats.vonmises使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.vonmises方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_all_distributions
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import vonmises [as 別名]
def test_all_distributions():
for dist in dists:
distfunc = getattr(stats, dist)
nargs = distfunc.numargs
alpha = 0.01
if dist == 'fatiguelife':
alpha = 0.001
if dist == 'frechet':
args = tuple(2*rand(1))+(0,)+tuple(2*rand(2))
elif dist == 'triang':
args = tuple(rand(nargs))
elif dist == 'reciprocal':
vals = rand(nargs)
vals[1] = vals[0] + 1.0
args = tuple(vals)
elif dist == 'vonmises':
yield check_distribution, dist, (10,), alpha
yield check_distribution, dist, (101,), alpha
args = tuple(1.0+rand(nargs))
else:
args = tuple(1.0+rand(nargs))
yield check_distribution, dist, args, alpha
示例2: check_vonmises_pdf_periodic
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import vonmises [as 別名]
def check_vonmises_pdf_periodic(k,l,s,x):
vm = stats.vonmises(k,loc=l,scale=s)
assert_almost_equal(vm.pdf(x),vm.pdf(x % (2*numpy.pi*s)))
示例3: check_vonmises_cdf_periodic
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import vonmises [as 別名]
def check_vonmises_cdf_periodic(k,l,s,x):
vm = stats.vonmises(k,loc=l,scale=s)
assert_almost_equal(vm.cdf(x) % 1,vm.cdf(x % (2*numpy.pi*s)) % 1)
示例4: cases_test_all_distributions
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import vonmises [as 別名]
def cases_test_all_distributions():
np.random.seed(1234)
for dist in dists:
distfunc = getattr(stats, dist)
nargs = distfunc.numargs
alpha = 0.01
if dist == 'fatiguelife':
alpha = 0.001
if dist == 'trapz':
args = tuple(np.sort(np.random.random(nargs)))
elif dist == 'triang':
args = tuple(np.random.random(nargs))
elif dist == 'reciprocal' or dist == 'truncnorm':
vals = np.random.random(nargs)
vals[1] = vals[0] + 1.0
args = tuple(vals)
elif dist == 'vonmises':
yield dist, (10,), alpha
yield dist, (101,), alpha
args = tuple(1.0 + np.random.random(nargs))
else:
args = tuple(1.0 + np.random.random(nargs))
yield dist, args, alpha
示例5: check_vonmises_pdf_periodic
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import vonmises [as 別名]
def check_vonmises_pdf_periodic(k, l, s, x):
vm = stats.vonmises(k, loc=l, scale=s)
assert_almost_equal(vm.pdf(x), vm.pdf(x % (2*numpy.pi*s)))
示例6: check_vonmises_cdf_periodic
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import vonmises [as 別名]
def check_vonmises_cdf_periodic(k, l, s, x):
vm = stats.vonmises(k, loc=l, scale=s)
assert_almost_equal(vm.cdf(x) % 1, vm.cdf(x % (2*numpy.pi*s)) % 1)
示例7: test_vonmises_numerical
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import vonmises [as 別名]
def test_vonmises_numerical():
vm = stats.vonmises(800)
assert_almost_equal(vm.cdf(0), 0.5)
示例8: _fitstart_beta
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import vonmises [as 別名]
def _fitstart_beta(self, x, fixed=None):
'''method of moment estimator as starting values for beta distribution
Parameters
----------
x : array
data for which the parameters are estimated
fixed : None or array_like
sequence of numbers and np.nan to indicate fixed parameters and parameters
to estimate
Returns
-------
est : tuple
preliminary estimates used as starting value for fitting, not
necessarily a consistent estimator
Notes
-----
This needs to be written and attached to each individual distribution
References
----------
for method of moment estimator for known loc and scale
http://en.wikipedia.org/wiki/Beta_distribution#Parameter_estimation
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm
NIST reference also includes reference to MLE in
Johnson, Kotz, and Balakrishan, Volume II, pages 221-235
'''
#todo: separate out this part to be used for other compact support distributions
# e.g. rdist, vonmises, and truncnorm
# but this might not work because it might still be distribution specific
a, b = x.min(), x.max()
eps = (a-b)*0.01
if fixed is None:
#this part not checked with books
loc = a - eps
scale = (a - b) * (1 + 2*eps)
else:
if np.isnan(fixed[-2]):
#estimate loc
loc = a - eps
else:
loc = fixed[-2]
if np.isnan(fixed[-1]):
#estimate scale
scale = (b + eps) - loc
else:
scale = fixed[-1]
#method of moment for known loc scale:
scale = float(scale)
xtrans = (x - loc)/scale
xm = xtrans.mean()
xv = xtrans.var()
tmp = (xm*(1-xm)/xv - 1)
p = xm * tmp
q = (1 - xm) * tmp
return (p, q, loc, scale) #check return type and should fixed be returned ?
示例9: _fitstart_poisson
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import vonmises [as 別名]
def _fitstart_poisson(self, x, fixed=None):
'''maximum likelihood estimator as starting values for Poisson distribution
Parameters
----------
x : array
data for which the parameters are estimated
fixed : None or array_like
sequence of numbers and np.nan to indicate fixed parameters and parameters
to estimate
Returns
-------
est : tuple
preliminary estimates used as starting value for fitting, not
necessarily a consistent estimator
Notes
-----
This needs to be written and attached to each individual distribution
References
----------
MLE :
http://en.wikipedia.org/wiki/Poisson_distribution#Maximum_likelihood
'''
#todo: separate out this part to be used for other compact support distributions
# e.g. rdist, vonmises, and truncnorm
# but this might not work because it might still be distribution specific
a = x.min()
eps = 0 # is this robust ?
if fixed is None:
#this part not checked with books
loc = a - eps
else:
if np.isnan(fixed[-1]):
#estimate loc
loc = a - eps
else:
loc = fixed[-1]
#MLE for standard (unshifted, if loc=0) Poisson distribution
xtrans = (x - loc)
lambd = xtrans.mean()
#second derivative d loglike/ dlambd Not used
#dlldlambd = 1/lambd # check
return (lambd, loc) #check return type and should fixed be returned ?