本文整理匯總了Python中scipy.stats.uniform方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.uniform方法的具體用法?Python stats.uniform怎麽用?Python stats.uniform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.uniform方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: likelihood
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def likelihood(parameter_vector):
parameter_vector = 10**np.array(parameter_vector)
#Solve ODE system given parameter vector
yout = odeint(odefunc, y0, tspan, args=(parameter_vector,))
cout = yout[:, 2]
#Calculate log probability contribution given simulated experimental values.
logp_ctotal = np.sum(like_ctot.logpdf(cout))
#If simulation failed due to integrator errors, return a log probability of -inf.
if np.isnan(logp_ctotal):
logp_ctotal = -np.inf
return logp_ctotal
# Add vector of rate parameters to be sampled as unobserved random variables in DREAM with uniform priors.
示例2: test_param_sampler
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def test_param_sampler():
# test basic properties of param sampler
param_distributions = {"kernel": ["rbf", "linear"],
"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
samples = [x for x in sampler]
assert_equal(len(samples), 10)
for sample in samples:
assert sample["kernel"] in ["rbf", "linear"]
assert 0 <= sample["C"] <= 1
# test that repeated calls yield identical parameters
param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=3, random_state=0)
assert_equal([x for x in sampler], [x for x in sampler])
if sp_version >= (0, 16):
param_distributions = {"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
assert_equal([x for x in sampler], [x for x in sampler])
示例3: setUp_configure
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def setUp_configure(self):
from scipy import stats
self.dist = distributions.Uniform
self.scipy_dist = stats.uniform
self.test_targets = set([
'batch_shape', 'cdf', 'entropy', 'event_shape', 'icdf', 'log_prob',
'mean', 'sample', 'stddev', 'support', 'variance'])
if self.use_loc_scale:
loc = numpy.random.uniform(
-10, 0, self.shape).astype(numpy.float32)
scale = numpy.random.uniform(
0, 10, self.shape).astype(numpy.float32)
self.params = {'loc': loc, 'scale': scale}
self.scipy_params = {'loc': loc, 'scale': scale}
else:
low = numpy.random.uniform(
-10, 0, self.shape).astype(numpy.float32)
high = numpy.random.uniform(
low, low + 10, self.shape).astype(numpy.float32)
self.params = {'low': low, 'high': high}
self.scipy_params = {'loc': low, 'scale': high-low}
self.support = '[low, high]'
示例4: _construct_generator_obj
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def _construct_generator_obj(self, C_tv_range, C_group_l1_range,
logspace=True):
generators = []
if len(C_tv_range) == 2:
if logspace:
generators.append(Log10UniformGenerator(*C_tv_range))
else:
generators.append(uniform(C_tv_range))
else:
generators.append(null_generator)
if len(C_group_l1_range) == 2:
if logspace:
generators.append(Log10UniformGenerator(*C_group_l1_range))
else:
generators.append(uniform(C_group_l1_range))
else:
generators.append(null_generator)
return generators
# Properties #
示例5: test_frozen_dirichlet
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def test_frozen_dirichlet(self):
np.random.seed(2846)
n = np.random.randint(1, 32)
alpha = np.random.uniform(10e-10, 100, n)
d = dirichlet(alpha)
assert_equal(d.var(), dirichlet.var(alpha))
assert_equal(d.mean(), dirichlet.mean(alpha))
assert_equal(d.entropy(), dirichlet.entropy(alpha))
num_tests = 10
for i in range(num_tests):
x = np.random.uniform(10e-10, 100, n)
x /= np.sum(x)
assert_equal(d.pdf(x[:-1]), dirichlet.pdf(x[:-1], alpha))
assert_equal(d.logpdf(x[:-1]), dirichlet.logpdf(x[:-1], alpha))
示例6: test_pairwise_distances
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def test_pairwise_distances(self):
# Test that the distribution of pairwise distances is close to correct.
np.random.seed(514)
def random_ortho(dim):
u, _s, v = np.linalg.svd(np.random.normal(size=(dim, dim)))
return np.dot(u, v)
for dim in range(2, 6):
def generate_test_statistics(rvs, N=1000, eps=1e-10):
stats = np.array([
np.sum((rvs(dim=dim) - rvs(dim=dim))**2)
for _ in range(N)
])
# Add a bit of noise to account for numeric accuracy.
stats += np.random.uniform(-eps, eps, size=stats.shape)
return stats
expected = generate_test_statistics(random_ortho)
actual = generate_test_statistics(scipy.stats.ortho_group.rvs)
_D, p = scipy.stats.ks_2samp(expected, actual)
assert_array_less(.05, p)
示例7: test_haar
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def test_haar(self):
# Test that the eigenvalues, which lie on the unit circle in
# the complex plane, are uncorrelated.
# Generate samples
dim = 5
samples = 1000 # Not too many, or the test takes too long
np.random.seed(514) # Note that the test is sensitive to seed too
xs = unitary_group.rvs(dim, size=samples)
# The angles "x" of the eigenvalues should be uniformly distributed
# Overall this seems to be a necessary but weak test of the distribution.
eigs = np.vstack(scipy.linalg.eigvals(x) for x in xs)
x = np.arctan2(eigs.imag, eigs.real)
res = kstest(x.ravel(), uniform(-np.pi, 2*np.pi).cdf)
assert_(res.pvalue > 0.05)
示例8: test_randomizedsearchcv_best_estimator
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def test_randomizedsearchcv_best_estimator(u1_ml100k):
"""Ensure that the best estimator is the one that gives the best score (by
re-running it)"""
param_distributions = {'n_epochs': [5], 'lr_all': uniform(0.002, 0.003),
'reg_all': uniform(0.04, 0.02), 'n_factors': [1],
'init_std_dev': [0]}
rs = RandomizedSearchCV(SVD, param_distributions, measures=['mae'],
cv=PredefinedKFold(), joblib_verbose=100)
rs.fit(u1_ml100k)
best_estimator = rs.best_estimator['mae']
# recompute MAE of best_estimator
mae = cross_validate(best_estimator, u1_ml100k, measures=['MAE'],
cv=PredefinedKFold())['test_mae']
assert mae == rs.best_score['mae']
示例9: testUniformPDF
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def testUniformPDF(self):
with self.test_session():
a = tf.constant([-3.0] * 5 + [15.0])
b = tf.constant([11.0] * 5 + [20.0])
uniform = tf.contrib.distributions.Uniform(a=a, b=b)
a_v = -3.0
b_v = 11.0
x = np.array([-10.5, 4.0, 0.0, 10.99, 11.3, 17.0], dtype=np.float32)
def _expected_pdf():
pdf = np.zeros_like(x) + 1.0 / (b_v - a_v)
pdf[x > b_v] = 0.0
pdf[x < a_v] = 0.0
pdf[5] = 1.0 / (20.0 - 15.0)
return pdf
expected_pdf = _expected_pdf()
pdf = uniform.pdf(x)
self.assertAllClose(expected_pdf, pdf.eval())
log_pdf = uniform.log_pdf(x)
self.assertAllClose(np.log(expected_pdf), log_pdf.eval())
示例10: testUniformCDF
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def testUniformCDF(self):
with self.test_session():
batch_size = 6
a = tf.constant([1.0] * batch_size)
b = tf.constant([11.0] * batch_size)
a_v = 1.0
b_v = 11.0
x = np.array([-2.5, 2.5, 4.0, 0.0, 10.99, 12.0], dtype=np.float32)
uniform = tf.contrib.distributions.Uniform(a=a, b=b)
def _expected_cdf():
cdf = (x - a_v) / (b_v - a_v)
cdf[x >= b_v] = 1
cdf[x < a_v] = 0
return cdf
cdf = uniform.cdf(x)
self.assertAllClose(_expected_cdf(), cdf.eval())
log_cdf = uniform.log_cdf(x)
self.assertAllClose(np.log(_expected_cdf()), log_cdf.eval())
示例11: testUniformSample
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def testUniformSample(self):
with self.test_session():
a = tf.constant([3.0, 4.0])
b = tf.constant(13.0)
a1_v = 3.0
a2_v = 4.0
b_v = 13.0
n = tf.constant(100000)
uniform = tf.contrib.distributions.Uniform(a=a, b=b)
samples = uniform.sample(n, seed=137)
sample_values = samples.eval()
self.assertEqual(sample_values.shape, (100000, 2))
self.assertAllClose(sample_values[::, 0].mean(), (b_v + a1_v) / 2,
atol=1e-2)
self.assertAllClose(sample_values[::, 1].mean(), (b_v + a2_v) / 2,
atol=1e-2)
self.assertFalse(np.any(sample_values[::, 0] < a1_v) or np.any(
sample_values >= b_v))
self.assertFalse(np.any(sample_values[::, 1] < a2_v) or np.any(
sample_values >= b_v))
示例12: testUniformNans
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def testUniformNans(self):
with self.test_session():
a = 10.0
b = [11.0, 100.0]
uniform = tf.contrib.distributions.Uniform(a=a, b=b)
no_nans = tf.constant(1.0)
nans = tf.constant(0.0) / tf.constant(0.0)
self.assertTrue(tf.is_nan(nans).eval())
with_nans = tf.stack([no_nans, nans])
pdf = uniform.pdf(with_nans)
is_nan = tf.is_nan(pdf).eval()
self.assertFalse(is_nan[0])
self.assertTrue(is_nan[1])
示例13: testUniformSampleWithShape
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def testUniformSampleWithShape(self):
with self.test_session():
a = 10.0
b = [11.0, 20.0]
uniform = tf.contrib.distributions.Uniform(a, b)
pdf = uniform.pdf(uniform.sample((2, 3)))
# pylint: disable=bad-continuation
expected_pdf = [
[[1.0, 0.1],
[1.0, 0.1],
[1.0, 0.1]],
[[1.0, 0.1],
[1.0, 0.1],
[1.0, 0.1]],
]
# pylint: enable=bad-continuation
self.assertAllClose(expected_pdf, pdf.eval())
pdf = uniform.pdf(uniform.sample())
expected_pdf = [1.0, 0.1]
self.assertAllClose(expected_pdf, pdf.eval())
示例14: __init__
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def __init__(self, lower, upper):
self.lower = lower
self.upper = upper
self.bounds = np.array([-1.0, 1.0])
if (self.lower is None) or (self.upper is None):
print('One or more bounds not specified. Assuming [0, 1].')
self.lower = 0.0
self.upper = 1.0
self.mean = 0.5 * (self.upper + self.lower)
self.variance = 1.0/12.0 * (self.upper - self.lower)**2
self.x_range_for_pdf = np.linspace(self.lower, self.upper, RECURRENCE_PDF_SAMPLES)
self.parent = uniform(loc=(self.lower), scale=(self.upper-self.lower))
self.skewness = 0.0
self.shape_parameter_A = 0.
self.shape_parameter_B = 0.
示例15: get_cdf
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import uniform [as 別名]
def get_cdf(self, points=None):
"""
A uniform cumulative density function.
:param points:
Matrix of points which have to be evaluated
:param double lower:
Lower bound of the support of the uniform distribution.
:param double upper:
Upper bound of the support of the uniform distribution.
:return:
An array of N equidistant values over the support of the distribution.
:return:
Cumulative density values along the support of the uniform distribution.
"""
if points is not None:
return self.parent.cdf(points)
else:
raise ValueError( 'Please digit an input for getCDF method')