本文整理匯總了Python中scipy.stats.ttest_rel方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.ttest_rel方法的具體用法?Python stats.ttest_rel怎麽用?Python stats.ttest_rel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.ttest_rel方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: ttest_alt
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def ttest_alt(a, b, alternative='two-sided'):
tt, tp = ttest_rel(a, b)
if alternative == 'greater':
if tt > 0:
tp = 1 - (1-tp)/2
else:
tp /= 2
elif alternative == 'less':
if tt <= 0:
tp /= 2
else:
tp = 1 - (1-tp)/2
return tt, tp
################################################################################
# __main__
################################################################################
示例2: test_vs_nonmasked
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def test_vs_nonmasked(self):
np.random.seed(1234567)
outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
# 1-D inputs
res1 = stats.ttest_rel(outcome[:, 0], outcome[:, 1])
res2 = mstats.ttest_rel(outcome[:, 0], outcome[:, 1])
assert_allclose(res1, res2)
# 2-D inputs
res1 = stats.ttest_rel(outcome[:, 0], outcome[:, 1], axis=None)
res2 = mstats.ttest_rel(outcome[:, 0], outcome[:, 1], axis=None)
assert_allclose(res1, res2)
res1 = stats.ttest_rel(outcome[:, :2], outcome[:, 2:], axis=0)
res2 = mstats.ttest_rel(outcome[:, :2], outcome[:, 2:], axis=0)
assert_allclose(res1, res2)
# Check default is axis=0
res3 = mstats.ttest_rel(outcome[:, :2], outcome[:, 2:])
assert_allclose(res2, res3)
示例3: tt_test
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def tt_test(qrels, res1, res2):
MAP_set1, P20_set1, NDCG20_set1 = evaluate_trec_per_query(qrels, res1)
MAP_set2, P20_set2, NDCG20_set2 = evaluate_trec_per_query(qrels, res2)
'''
print(P20_set1)
print(P20_set2)
print(NDCG20_set1)
print(NDCG20_set2)
print(len([t for t in np.asarray(MAP_set2) - np.asarray(MAP_set1) if t > 0]))
print(len([t for t in np.asarray(P20_set2) - np.asarray(P20_set1) if t > 0]))
print(len([t for t in np.asarray(NDCG20_set2) - np.asarray(NDCG20_set1) if t > 0]))
'''
t_value_map, p_value_map = stats.ttest_rel(MAP_set1, MAP_set2)
t_value_p20, p_value_p20 = stats.ttest_rel(P20_set1, P20_set2)
t_value_ndcg20, p_value_ndcg20 = stats.ttest_rel(NDCG20_set1, NDCG20_set2)
return p_value_map, p_value_p20, p_value_ndcg20
示例4: paired_t_student
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def paired_t_student(data1, data2, logger=None):
"""Test for significance using paired t-test.
Parameters
----------
data1, data2: List<float>, List<float>
ordered results for instances for two different configurations
logger: logging.Logger
to log scores, if given
Returns
-------
p: float
p-value for statistical test
"""
t, p = ttest_rel(data1, data2)
if logger:
logger.debug("Paired t-test with %d samples yields t-value of %f and "
"p-value of %f", len(data1), t, p)
return p
示例5: test_fully_masked
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def test_fully_masked(self):
np.random.seed(1234567)
outcome = ma.masked_array(np.random.randn(3, 2),
mask=[[1, 1, 1], [0, 0, 0]])
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "invalid value encountered in absolute")
for pair in [(outcome[:, 0], outcome[:, 1]), ([np.nan, np.nan], [1.0, 2.0])]:
t, p = mstats.ttest_rel(*pair)
assert_array_equal(t, (np.nan, np.nan))
assert_array_equal(p, (np.nan, np.nan))
示例6: test_result_attributes
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def test_result_attributes(self):
np.random.seed(1234567)
outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
res = mstats.ttest_rel(outcome[:, 0], outcome[:, 1])
attributes = ('statistic', 'pvalue')
check_named_results(res, attributes, ma=True)
示例7: test_invalid_input_size
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def test_invalid_input_size(self):
assert_raises(ValueError, mstats.ttest_rel,
np.arange(10), np.arange(11))
x = np.arange(24)
assert_raises(ValueError, mstats.ttest_rel,
x.reshape(2, 3, 4), x.reshape(2, 4, 3), axis=1)
assert_raises(ValueError, mstats.ttest_rel,
x.reshape(2, 3, 4), x.reshape(2, 4, 3), axis=2)
示例8: test_empty
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def test_empty(self):
res1 = mstats.ttest_rel([], [])
assert_(np.all(np.isnan(res1)))
示例9: test
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def test(self, xtest, x, type_='smaller', alpha=0.05):
"""
Parameters
----------
type_: in ['smaller', 'equality']
type of comparison to perform
alpha: float
significance level
"""
# call function to make sure it has been evaluated a sufficient number of times
if type_ not in ['smaller', 'equality']:
raise NotImplementedError(type_)
ftest, ftestse = self(xtest)
f, fse = self(x)
# get function values
fxtest = np.array(self.cache[tuple(xtest)])
fx = np.array(self.cache[tuple(x)])
if np.mean(fxtest-fx) == 0.0:
if type_ == 'equality':
return True
if type_ == 'smaller':
return False
if self.paired:
# if values are paired then test on distribution of differences
statistic, pvalue = stats.ttest_rel(fxtest, fx, axis=None)
else:
statistic, pvalue = stats.ttest_ind(fxtest, fx, equal_var=False, axis=None)
if type_ == 'smaller':
# if paired then df=N-1, else df=N1+N2-2=2*N-2
df = self.N-1 if self.paired else 2*self.N-2
pvalue = stats.t.cdf(statistic, df)
# return true if null hypothesis rejected
return pvalue < alpha
if type_ == 'equality':
# return true if null hypothesis not rejected
return pvalue > alpha
示例10: account_test
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def account_test(ac1, ac2):
"""
Given two Account like objects performs a two sided t test of normalised returns
:param ac1: first set of returns
:type ac1: accountCurve or pd.DataFrame of returns
:param ac2: second set of returns
:type ac2: accountCurve or pd.DataFrame of returns
:returns: 2 tuple: difference in means, t-test results
"""
common_ts = sorted(set(list(ac1.index)) & set(list(ac2.index)))
ac1_common = ac1.cumsum().reindex(common_ts, method="ffill").diff().values
ac2_common = ac2.cumsum().reindex(common_ts, method="ffill").diff().values
missing_values = [
idx for idx in range(len(common_ts))
if (np.isnan(ac1_common[idx]) or np.isnan(ac2_common[idx]))
]
ac1_common = [
ac1_common[idx] for idx in range(len(common_ts))
if idx not in missing_values
]
ac2_common = [
ac2_common[idx] for idx in range(len(common_ts))
if idx not in missing_values
]
ac1_common = ac1_common / np.nanstd(ac1_common)
ac2_common = ac2_common / np.nanstd(ac2_common)
diff = np.mean(ac1_common) - np.mean(ac2_common)
return (diff, ttest_rel(ac1_common, ac2_common))
示例11: main
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def main(score_dict_a, score_dict_b, k_list, tag_list):
for tag in tag_list:
for k in k_list:
f1_np_array_a = np.array(score_dict_a['f1_score@{}_{}'.format(k, tag)])
f1_np_array_b = np.array(score_dict_b['f1_score@{}_{}'.format(k, tag)])
t_stat, p_value = stats.ttest_rel(f1_np_array_a, f1_np_array_b)
print("tag: {}, topk: {}, p-value: {}".format(tag, k, p_value))
示例12: do_statistical_testings
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def do_statistical_testings(self, i_ups_concept, i_ups_random):
"""Conducts ttest to compare two set of samples.
In particular, if the means of the two samples are staistically different.
Args:
i_ups_concept: samples of TCAV scores for concept vs. randoms
i_ups_random: samples of TCAV scores for random vs. randoms
Returns:
p value
"""
min_len = min(len(i_ups_concept), len(i_ups_random))
_, p = stats.ttest_rel(i_ups_concept[:min_len], i_ups_random[:min_len])
return p
示例13: permttest
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def permttest(data1,data2,permutations, teststat):
rs=[]
wtf1=data1
wtf2=data2
for perm in range(0,permutations):
temp1=[]
temp2=[]
buf1=wtf1
buf2=wtf2
while len(temp1) < len(buf1):
temp1.append(choice(buf1+buf2))
#temp1.append(buf1[0])
while len(temp2) < len(buf2):
temp2.append(choice(buf2+buf1))
#temp2.append(buf2[0])
tval,pval=stats.ttest_rel(temp1,temp2)
rs.append(tval)
#print("Computed permutation "+str(perm)+" of "+str(permutations))
pval=float(0)
for item in rs:
if (abs(item) >= abs(teststat)):
pval=pval+1
pval=float(pval)/float(permutations)
return pval
示例14: getTtestPvalue
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def getTtestPvalue(self, fs_dict1, fs_dict2, paired=None, ratio=None):
"""
scipy lib is used to compute p-value of Ttest
scipy: http://www.scipy.org/
t-test: http://en.wikipedia.org/wiki/Student's_t-test
"""
try:
from scipy import stats
import numpy as np
except ImportError:
print("No python scipy/numpy library installed!")
return None
ret = []
s1 = self._process_files(fs_dict1, self._get_list_self, merge=False)
s2 = self._process_files(fs_dict2, self._get_list_self, merge=False)
# s*[line][col] contians items (line*col) of all sample files
for line in range(len(s1)):
tmp = []
if type(s1[line]) != list:
tmp = s1[line]
else:
if len(s1[line][0]) < 2:
continue
for col in range(len(s1[line])):
avg1 = self._get_list_avg(s1[line][col])
avg2 = self._get_list_avg(s2[line][col])
sample1 = np.array(s1[line][col])
sample2 = np.array(s2[line][col])
warnings.simplefilter("ignore", RuntimeWarning)
if (paired):
if (ratio):
(_, p) = stats.ttest_rel(np.log(sample1), np.log(sample2))
else:
(_, p) = stats.ttest_rel(sample1, sample2)
else:
(_, p) = stats.ttest_ind(sample1, sample2)
flag = "+"
if float(avg1) > float(avg2):
flag = "-"
tmp.append(flag + "%f" % (1 - p))
tmp = "|".join(tmp)
ret.append(tmp)
return ret
示例15: test_ttest_rel
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_rel [as 別名]
def test_ttest_rel():
# regression test
tr,pr = 0.81248591389165692, 0.41846234511362157
tpr = ([tr,-tr],[pr,pr])
rvs1 = np.linspace(1,100,100)
rvs2 = np.linspace(1.01,99.989,100)
rvs1_2D = np.array([np.linspace(1,100,100), np.linspace(1.01,99.989,100)])
rvs2_2D = np.array([np.linspace(1.01,99.989,100), np.linspace(1,100,100)])
t,p = stats.ttest_rel(rvs1, rvs2, axis=0)
assert_array_almost_equal([t,p],(tr,pr))
t,p = stats.ttest_rel(rvs1_2D.T, rvs2_2D.T, axis=0)
assert_array_almost_equal([t,p],tpr)
t,p = stats.ttest_rel(rvs1_2D, rvs2_2D, axis=1)
assert_array_almost_equal([t,p],tpr)
# test on 3 dimensions
rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D])
rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D])
t,p = stats.ttest_rel(rvs1_3D, rvs2_3D, axis=1)
assert_array_almost_equal(np.abs(t), tr)
assert_array_almost_equal(np.abs(p), pr)
assert_equal(t.shape, (2, 3))
t,p = stats.ttest_rel(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2)
assert_array_almost_equal(np.abs(t), tr)
assert_array_almost_equal(np.abs(p), pr)
assert_equal(t.shape, (3, 2))
olderr = np.seterr(all='ignore')
try:
# test zero division problem
t,p = stats.ttest_rel([0,0,0],[1,1,1])
assert_equal((np.abs(t),p), (np.inf, 0))
assert_equal(stats.ttest_rel([0,0,0], [0,0,0]), (np.nan, np.nan))
# check that nan in input array result in nan output
anan = np.array([[1,np.nan],[-1,1]])
assert_equal(stats.ttest_ind(anan, np.zeros((2,2))),([0, np.nan], [1,np.nan]))
finally:
np.seterr(**olderr)