當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.ttest_1samp方法代碼示例

本文整理匯總了Python中scipy.stats.ttest_1samp方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.ttest_1samp方法的具體用法?Python stats.ttest_1samp怎麽用?Python stats.ttest_1samp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.ttest_1samp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mcfdr

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def mcfdr(nrepl=100, nobs=50, ntests=10, ntrue=6, mu=0.5, alpha=0.05, rho=0.):
    '''MonteCarlo to test fdrcorrection
    '''
    nfalse = ntests - ntrue
    locs = np.array([0.]*ntrue + [mu]*(ntests - ntrue))
    results = []
    for i in range(nrepl):
        #rvs = locs + stats.norm.rvs(size=(nobs, ntests))
        rvs = locs + randmvn(rho, size=(nobs, ntests))
        tt, tpval = stats.ttest_1samp(rvs, 0)
        res = fdrcorrection_bak(np.abs(tpval), alpha=alpha, method='i')
        res0 = fdrcorrection0(np.abs(tpval), alpha=alpha)
        #res and res0 give the same results
        results.append([np.sum(res[:ntrue]), np.sum(res[ntrue:])] +
                       [np.sum(res0[:ntrue]), np.sum(res0[ntrue:])] +
                       res.tolist() +
                       np.sort(tpval).tolist() +
                       [np.sum(tpval[:ntrue]<alpha),
                        np.sum(tpval[ntrue:]<alpha)] +
                       [np.sum(tpval[:ntrue]<alpha/ntests),
                        np.sum(tpval[ntrue:]<alpha/ntests)])
    return np.array(results) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:multicomp.py

示例2: test_onesample

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def test_onesample(self):
        t, p = stats.ttest_1samp(self.X1, 0)

        assert_array_almost_equal(t, self.T1_0)
        assert_array_almost_equal(p, self.P1_0)

        t, p = stats.ttest_1samp(self.X2, 0)

        assert_array_almost_equal(t, self.T2_0)
        assert_array_almost_equal(p, self.P2_0)

        t, p = stats.ttest_1samp(self.X1, 1)

        assert_array_almost_equal(t, self.T1_1)
        assert_array_almost_equal(p, self.P1_1)

        t, p = stats.ttest_1samp(self.X1, 2)

        assert_array_almost_equal(t, self.T1_2)
        assert_array_almost_equal(p, self.P1_2) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:22,代碼來源:test_stats.py

示例3: compute_expected_treatment_likelihood_ratio

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def compute_expected_treatment_likelihood_ratio(df, term_counts, word_index, do_shuffle=False):
	word_occurence = term_counts[:,word_index].toarray()
	mask_word = (word_occurence == 1).flatten()
	p_ind = np.arange(term_counts.shape[0])
	n = p_ind[mask_word].shape[0]
	if do_shuffle:
		np.random.shuffle(p_ind)
		rand_indices = p_ind[:mask_word.shape[0]]
		df_word_occurs = df[df.post_index.isin(rand_indices)]
	else:
		df_word_occurs = df[df.post_index.isin(p_ind[mask_word])]
	
	model_p_z = train_treatment_classifier(df, term_counts, word_index, occurence=None)
	prob_t_given_z = predict_treatment_prob_from_model(model_p_z, df_word_occurs)
	model_st_word = train_treatment_classifier(df_word_occurs, term_counts, word_index,occurence=None)
	prob_st_word = predict_treatment_prob_from_model(model_st_word, df_word_occurs)
	log_ratio = np.log(prob_st_word/prob_t_given_z)
	print("Mean (and std err.) of ratio:", log_ratio.mean(), log_ratio.std()/np.sqrt(n))
	print("N = ", n)
	return ttest_1samp(log_ratio, 0.0) 
開發者ID:blei-lab,項目名稱:causal-text-embeddings,代碼行數:22,代碼來源:test_cond_indep.py

示例4: compute_treatment_likelihood_ratio

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def compute_treatment_likelihood_ratio(df, term_counts, word_index):
	null_model = train_treatment_classifier(df, term_counts, word_index, occurence=None)
	model_st_word = train_treatment_classifier(df, term_counts, word_index)
	model_st_no_word = train_treatment_classifier(df, term_counts, word_index, occurence=0)

	word_occurence = term_counts[:,word_index].toarray()
	mask_word = (word_occurence == 1).flatten()
	mask_no_word = (word_occurence == 0).flatten()
	p_ind = np.arange(term_counts.shape[0])
	word_occurs = df[df.post_index.isin(p_ind[mask_word])]
	word_no_occurs = df[df.post_index.isin(p_ind[mask_no_word])]

	null_given_word = predict_treatment_prob_from_model(null_model, word_occurs)
	null_given_no_word = predict_treatment_prob_from_model(null_model, word_no_occurs)
	p_t_given_word = predict_treatment_prob_from_model(model_st_word, word_occurs)
	p_t_given_no_word = predict_treatment_prob_from_model(model_st_no_word, word_no_occurs)

	ratio_word = np.log(null_given_word / p_t_given_word)
	ratio_no_word = np.log(null_given_no_word / p_t_given_no_word)
	ratio = np.hstack([ratio_word, ratio_no_word])
	print("Mean and std of log likelihood ratios", ratio.mean(), ratio.std())
	# return -2*ratio.sum(), chi2.pdf(-2*ratio.sum(), df=2)
	return ttest_1samp(ratio, 0.0) 
開發者ID:blei-lab,項目名稱:causal-text-embeddings,代碼行數:25,代碼來源:test_cond_indep.py

示例5: likelihood_ratio_hypothesis_test

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def likelihood_ratio_hypothesis_test(df, term_counts, word_index):
	treated = df[df.treatment==1]
	control = df[df.treatment==0]
	null_model = train_classifier(df, term_counts, word_index, treat_index=None)
	model_st_treated = train_classifier(df, term_counts, word_index)
	model_st_not_treated = train_classifier(df, term_counts, word_index, treat_index=0)

	null_st_treated = compute_word_occur_prob(null_model, treated)
	null_st_not_treated = compute_word_occur_prob(null_model, control)
	prob_st_treated = compute_word_occur_prob(model_st_treated, treated)
	prob_st_not_treated = compute_word_occur_prob(model_st_not_treated)

	ratio_treated = np.log(null_st_treated / prob_st_treated)
	ratio_control = np.log(null_st_not_treated / prob_st_not_treated)
	ratios = np.hstack([ratio_treated,ratio_control])

	print("Mean and std. of log likelihood ratios:", ratios.mean(), ratios.std())
	return ttest_1samp(ratios, 0.0)
	
	# statistic = -2 * ratios.sum()
	# p_value = chi2.pdf(statistic, df=2)
	# return statistic, p_value 
開發者ID:blei-lab,項目名稱:causal-text-embeddings,代碼行數:24,代碼來源:test_cond_indep.py

示例6: plot_information_table

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def plot_information_table(ic_data):
    """
    IC 統計量
    """
    ic_summary_table = pd.DataFrame()
    ic_summary_table["IC Mean"] = ic_data.mean()
    ic_summary_table["IC std."] = ic_data.std()
    ic_summary_table["Risk-Adjusted IC (IR)"] = ic_data.mean() / ic_data.std()
    t_stat, p_value = stats.ttest_1samp(ic_data, 0)
    ic_summary_table["t-stat (IC)"] = t_stat
    ic_summary_table["p-value (IC)"] = p_value
    ic_summary_table["IC Skew"] = stats.skew(ic_data)
    ic_summary_table["IC Kurtosis"] = stats.kurtosis(ic_data)

    print("Information Analysis")
    plotting_utils.print_table(ic_summary_table.apply(lambda x: x.round(3)).T) 
開發者ID:QUANTAXIS,項目名稱:QUANTAXIS,代碼行數:18,代碼來源:plotting.py

示例7: test_vs_nonmasked

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def test_vs_nonmasked(self):
        np.random.seed(1234567)
        outcome = np.random.randn(20, 4) + [0, 0, 1, 2]

        # 1-D inputs
        res1 = stats.ttest_1samp(outcome[:, 0], 1)
        res2 = mstats.ttest_1samp(outcome[:, 0], 1)
        assert_allclose(res1, res2)

        # 2-D inputs
        res1 = stats.ttest_1samp(outcome[:, 0], outcome[:, 1], axis=None)
        res2 = mstats.ttest_1samp(outcome[:, 0], outcome[:, 1], axis=None)
        assert_allclose(res1, res2)
        res1 = stats.ttest_1samp(outcome[:, :2], outcome[:, 2:], axis=0)
        res2 = mstats.ttest_1samp(outcome[:, :2], outcome[:, 2:], axis=0)
        assert_allclose(res1, res2)

        # Check default is axis=0
        res3 = mstats.ttest_1samp(outcome[:, :2], outcome[:, 2:])
        assert_allclose(res2, res3) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_mstats_basic.py

示例8: main

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def main():
    [(_ignore_stat, first), (_ignore_stat, second)] = load_stats(sys.argv[1:])

    # Attempt to increase robustness by dropping the outlying 10% of values.
    first = trim(first, 0.1)
    second = trim(second, 0.1)

    fmean = stats.mean(first)
    smean = stats.mean(second)
    p = ttest_1samp(second, fmean)[1]
    if p >= 0.95:
        # rejected the null hypothesis
        print(sys.argv[1], 'mean of', fmean, 'differs from', sys.argv[2], 'mean of', smean, '(%2.0f%%)' % (p * 100,))
    else:
        # failed to reject the null hypothesis
        print('cannot prove means (%s, %s) differ (%2.0f%%)' % (fmean, smean, p * 100,)) 
開發者ID:apple,項目名稱:ccs-calendarserver,代碼行數:18,代碼來源:compare.py

示例9: test_weightstats_2

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def test_weightstats_2(self):
        x1, x2 = self.x1, self.x2
        w1, w2 = self.w1, self.w2

        d1 = DescrStatsW(x1)
        d1w = DescrStatsW(x1, weights=w1)
        d2w = DescrStatsW(x2, weights=w2)
        x1r = d1w.asrepeats()
        x2r = d2w.asrepeats()
#        print 'random weights'
#        print ttest_ind(x1, x2, weights=(w1, w2))
#        print stats.ttest_ind(x1r, x2r)
        assert_almost_equal(ttest_ind(x1, x2, weights=(w1, w2))[:2],
                            stats.ttest_ind(x1r, x2r), 14)
        # not the same as new version with random weights/replication
#        assert x1r.shape[0] == d1w.sum_weights
#        assert x2r.shape[0] == d2w.sum_weights

        assert_almost_equal(x2r.mean(0), d2w.mean, 14)
        assert_almost_equal(x2r.var(), d2w.var, 14)
        assert_almost_equal(x2r.std(), d2w.std, 14)
        # note: the following is for 1d
        assert_almost_equal(np.cov(x2r, bias=1), d2w.cov, 14)
        # assert_almost_equal(np.corrcoef(np.x2r), d2w.corrcoef, 19)
        # TODO: exception in corrcoef (scalar case)

        # one-sample tests
#        print d1.ttest_mean(3)
#        print stats.ttest_1samp(x1, 3)
#        print d1w.ttest_mean(3)
#        print stats.ttest_1samp(x1r, 3)
        assert_almost_equal(d1.ttest_mean(3)[:2], stats.ttest_1samp(x1, 3), 11)
        assert_almost_equal(d1w.ttest_mean(3)[:2],
                            stats.ttest_1samp(x1r, 3), 11) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:36,代碼來源:test_weightstats.py

示例10: test_weightstats_3

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def test_weightstats_3(self):
        x1_2d, x2_2d = self.x1_2d, self.x2_2d
        w1, w2 = self.w1, self.w2

        d1w_2d = DescrStatsW(x1_2d, weights=w1)
        d2w_2d = DescrStatsW(x2_2d, weights=w2)
        x1r_2d = d1w_2d.asrepeats()
        x2r_2d = d2w_2d.asrepeats()

        assert_almost_equal(x2r_2d.mean(0), d2w_2d.mean, 14)
        assert_almost_equal(x2r_2d.var(0), d2w_2d.var, 14)
        assert_almost_equal(x2r_2d.std(0), d2w_2d.std, 14)
        assert_almost_equal(np.cov(x2r_2d.T, bias=1), d2w_2d.cov, 14)
        assert_almost_equal(np.corrcoef(x2r_2d.T), d2w_2d.corrcoef, 14)

#        print d1w_2d.ttest_mean(3)
#        #scipy.stats.ttest is also vectorized
#        print stats.ttest_1samp(x1r_2d, 3)
        t, p, d = d1w_2d.ttest_mean(3)
        assert_almost_equal([t, p], stats.ttest_1samp(x1r_2d, 3), 11)
        # print [stats.ttest_1samp(xi, 3) for xi in x1r_2d.T]
        cm = CompareMeans(d1w_2d, d2w_2d)
        ressm = cm.ttest_ind()
        resss = stats.ttest_ind(x1r_2d, x2r_2d)
        assert_almost_equal(ressm[:2], resss, 14)

#        doesn't work for 2d, levene doesn't use weights
#        cm = CompareMeans(d1w_2d, d2w_2d)
#        ressm = cm.test_equal_var()
#        resss = stats.levene(x1r_2d, x2r_2d)
#        assert_almost_equal(ressm[:2], resss, 14) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:33,代碼來源:test_weightstats.py

示例11: test_ttest

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def test_ttest(self):
        x1r = self.x1r
        d1w = self.d1w
        assert_almost_equal(d1w.ttest_mean(3)[:2],
                            stats.ttest_1samp(x1r, 3), 11)

#    def
#        assert_almost_equal(ttest_ind(x1, x2, weights=(w1, w2))[:2],
#                            stats.ttest_ind(x1r, x2r), 14) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:11,代碼來源:test_weightstats.py

示例12: linear_harvey_collier

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def linear_harvey_collier(res):
    '''Harvey Collier test for linearity

    The Null hypothesis is that the regression is correctly modeled as linear.

    Parameters
    ----------
    res : Result instance

    Returns
    -------
    tvalue : float
        test statistic, based on ttest_1sample
    pvalue : float
        pvalue of the test

    Notes
    -----
    TODO: add sort_by option

    This test is a t-test that the mean of the recursive ols residuals is zero.
    Calculating the recursive residuals might take some time for large samples.

    '''
    #I think this has different ddof than
    #B.H. Baltagi, Econometrics, 2011, chapter 8
    #but it matches Gretl and R:lmtest, pvalue at decimal=13
    rr = recursive_olsresiduals(res, skip=3, alpha=0.95)
    from scipy import stats

    return stats.ttest_1samp(rr[3][3:], 0) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:33,代碼來源:diagnostic.py

示例13: ttest

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def ttest(_arg1, _arg2):
    """
    T-Test is a statistical hypothesis test that is used to compare
    two sample means or a sample’s mean against a known population mean.
    For more information on the function and how to use it please refer
    to tabpy-tools.md
    """
    # one sample test with mean
    if len(_arg2) == 1:
        test_stat, p_value = stats.ttest_1samp(_arg1, _arg2)
        return p_value
    # two sample t-test where _arg1 is numeric and _arg2 is a binary factor
    elif len(set(_arg2)) == 2:
        # each sample in _arg1 needs to have a corresponding classification
        # in _arg2
        if not (len(_arg1) == len(_arg2)):
            raise ValueError
        class1, class2 = set(_arg2)
        sample1 = []
        sample2 = []
        for i in range(len(_arg1)):
            if _arg2[i] == class1:
                sample1.append(_arg1[i])
            else:
                sample2.append(_arg1[i])
        test_stat, p_value = stats.ttest_ind(sample1, sample2, equal_var=False)
        return p_value
    # arg1 is a sample and arg2 is a sample
    else:
        test_stat, p_value = stats.ttest_ind(_arg1, _arg2, equal_var=False)
        return p_value 
開發者ID:tableau,項目名稱:TabPy,代碼行數:33,代碼來源:tTest.py

示例14: test_ttest_1samp_new

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def test_ttest_1samp_new():
    n1, n2, n3 = (10,15,20)
    rvn1 = stats.norm.rvs(loc=5,scale=10,size=(n1,n2,n3))

    # check multidimensional array and correct axis handling
    # deterministic rvn1 and rvn2 would be better as in test_ttest_rel
    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n2,n3)),axis=0)
    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=0)
    t3,p3 = stats.ttest_1samp(rvn1[:,0,0], 1)
    assert_array_almost_equal(t1,t2, decimal=14)
    assert_almost_equal(t1[0,0],t3, decimal=14)
    assert_equal(t1.shape, (n2,n3))

    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n3)),axis=1)
    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=1)
    t3,p3 = stats.ttest_1samp(rvn1[0,:,0], 1)
    assert_array_almost_equal(t1,t2, decimal=14)
    assert_almost_equal(t1[0,0],t3, decimal=14)
    assert_equal(t1.shape, (n1,n3))

    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n2)),axis=2)
    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=2)
    t3,p3 = stats.ttest_1samp(rvn1[0,0,:], 1)
    assert_array_almost_equal(t1,t2, decimal=14)
    assert_almost_equal(t1[0,0],t3, decimal=14)
    assert_equal(t1.shape, (n1,n2))

    olderr = np.seterr(all='ignore')
    try:
        # test zero division problem
        t,p = stats.ttest_1samp([0,0,0], 1)
        assert_equal((np.abs(t),p), (np.inf, 0))
        assert_equal(stats.ttest_1samp([0,0,0], 0), (np.nan, np.nan))

        # check that nan in input array result in nan output
        anan = np.array([[1,np.nan],[-1,1]])
        assert_equal(stats.ttest_1samp(anan, 0),([0, np.nan], [1,np.nan]))
    finally:
        np.seterr(**olderr) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:41,代碼來源:test_stats.py

示例15: agreement_t_test

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import ttest_1samp [as 別名]
def agreement_t_test(a, b):
    """ Check agreement based on means of two samples, using the t-statistic. """
    means1 = np.nanmean(a, 0)

    t1, p1 = stats.ttest_1samp(b, means1)
    # t2, p2 = stats.ttest_1samp(a, means2)

    # select agreeing featurs (p <= 0.05)
    return p1 < 0.05 
開發者ID:sorend,項目名稱:fylearn,代碼行數:11,代碼來源:rafpc.py


注:本文中的scipy.stats.ttest_1samp方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。