當前位置: 首頁>>代碼示例>>Python>>正文


Python truncnorm.rvs方法代碼示例

本文整理匯總了Python中scipy.stats.truncnorm.rvs方法的典型用法代碼示例。如果您正苦於以下問題:Python truncnorm.rvs方法的具體用法?Python truncnorm.rvs怎麽用?Python truncnorm.rvs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats.truncnorm的用法示例。


在下文中一共展示了truncnorm.rvs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: rvs

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def rvs(self) -> float:
        """
        Will return a float value in the specified range as specified at creation.

        :return: a float.
        """
        if self.hard_clip_min is None and self.hard_clip_max is None:
            result = float(np.random.normal(self._mean, self._std))
        else:
            a = -np.inf
            b = np.inf

            if self.hard_clip_min is not None:
                a = (self.hard_clip_min - self._mean) / self._std

            if self.hard_clip_max is not None:
                b = (self.hard_clip_max - self._mean) / self._std

            result = truncnorm.rvs(a=a, b=b, loc=self._mean, scale=self._std)

        if not math.isfinite(result):
            return self.rvs()
        return float(result) 
開發者ID:Neuraxio,項目名稱:Neuraxle,代碼行數:25,代碼來源:distributions.py

示例2: __init__

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def __init__(self, log2_space_mean: float, log2_space_std: float,
                 hard_clip_min: float = None, hard_clip_max: float = None, null_default_value=None):
        """
        Create a LogNormal distribution. 

        :param log2_space_mean: the most common value to pop, but before taking 2**value.
        :param log2_space_std: the standard deviation of the most common value to pop, but before taking 2**value.
        :param hard_clip_min: if not none, rvs will return max(result, hard_clip_min). This value is not checked in logspace (so it is checked after the exp).
        :param hard_clip_max: if not none, rvs will return min(result, hard_clip_min). This value is not checked in logspace (so it is checked after the exp).
        :param null_default_value: null default value for distribution. if None, take the hard_clip_min
        :type null_default_value: int
        """
        if null_default_value is None:
            HyperparameterDistribution.__init__(self, hard_clip_min)
        else:
            HyperparameterDistribution.__init__(self, null_default_value)
        self.log2_space_mean = log2_space_mean
        self.log2_space_std = log2_space_std
        self.hard_clip_min = hard_clip_min
        self.hard_clip_max = hard_clip_max 
開發者ID:Neuraxio,項目名稱:Neuraxle,代碼行數:22,代碼來源:distributions.py

示例3: trunc_norm_trendify

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def trunc_norm_trendify(self, loc, var_scale=0.1):
        """
        This function is used to draw a sample from a bounded linear trend with
        some noise.
        Y = (min - max)* loc + min + noise
        The user can control the expectation and variance of the values
        provided by this function. Note the upper and lower bounds come from the
        data_gen object.

        Args:
            loc (float): This controls the expectation of the produced variate.
                This should specify the percentage of the way between the
                [min, max] range to center values.
            var_scale (float): This controls the variance of teh produced
                variate. This should b
        """
        loc = min(max(loc, 0.0), 1.0)
        var_scale = min(max(var_scale, 0.0), 1.0)

        lower_bound = self.data_gen.min_float
        upper_bound = self.data_gen.max_float
        mu = loc * (upper_bound - lower_bound) + lower_bound
        sigma = var_scale * (upper_bound - lower_bound)
        a, b = (lower_bound - mu) / sigma, (upper_bound - mu) / sigma
        return truncnorm.rvs(a, b, mu, sigma) 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:27,代碼來源:PerformantDataGenerator.py

示例4: truncated_z_sample

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def truncated_z_sample(batch_size, truncation=1., seed=None):
    state = None if seed is None else np.random.RandomState(seed)
    values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state)
    return truncation * values 
開發者ID:sxhxliang,項目名稱:BigGAN-pytorch,代碼行數:6,代碼來源:demo.py

示例5: fit

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def fit(self, X):
        """
        Fit a model given data.
        :param X: array-like, shape = (n_samples, n_features)
        :return:
        """
        # Initialize RBM parameters
        self.n_visible_units = X.shape[1]
        if self.activation_function == 'sigmoid':
            self.W = np.random.randn(self.n_hidden_units, self.n_visible_units) / np.sqrt(self.n_visible_units)
            self.c = np.random.randn(self.n_hidden_units) / np.sqrt(self.n_visible_units)
            self.b = np.random.randn(self.n_visible_units) / np.sqrt(self.n_visible_units)
            self._activation_function_class = SigmoidActivationFunction
        elif self.activation_function == 'relu':
            self.W = truncnorm.rvs(-0.2, 0.2, size=[self.n_hidden_units, self.n_visible_units]) / np.sqrt(
                self.n_visible_units)
            self.c = np.full(self.n_hidden_units, 0.1) / np.sqrt(self.n_visible_units)
            self.b = np.full(self.n_visible_units, 0.1) / np.sqrt(self.n_visible_units)
            self._activation_function_class = ReLUActivationFunction
        else:
            raise ValueError("Invalid activation function.")

        if self.optimization_algorithm == 'sgd':
            self._stochastic_gradient_descent(X)
        else:
            raise ValueError("Invalid optimization algorithm.")
        return self 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-with-TensorFlow-Second-Edition,代碼行數:29,代碼來源:base_models.py

示例6: sample_tgmm

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def sample_tgmm(center, scale, n, xmin, xmax):
    '''
    Sample from a truncated Gaussian mixture model (TGMM).
    Returns the samples and their importance weight.
    Args:
        center: center of TGMM.
        scale: scale of TGMM.
        n: number of samples.
        xmin: smallest values of the truncated interval. 
        xmax: largest values of the truncated interval. 
    '''
    dx = len(xmin)
    slen = len(center)
    rd_centers = np.random.choice(slen, (n))
    ta = (xmin - center[rd_centers]) / scale
    tb = (xmax - center[rd_centers]) / scale
    x_samples_gmm = truncnorm.rvs(ta, tb, loc=center[rd_centers], scale=scale)
    
    ta = (xmin - center) / scale
    tb = (xmax - center) / scale
    def truncpdf(j,i):
        return truncnorm.pdf(x_samples_gmm[:,j], ta[i][j], tb[i][j], center[i][j], scale[j])
    
    prob = [np.prod(map(partial(truncpdf, i=i), range(dx)), axis=0) for i in range(slen)]
    prob = np.sum(prob, axis=0) / slen
    np.clip(prob, EPS, 1/EPS)
    return x_samples_gmm, 1./prob 
開發者ID:zi-w,項目名稱:Kitchen2D,代碼行數:29,代碼來源:helper.py

示例7: truncated_z_sample

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def truncated_z_sample(batch_size, z_dim, truncation=0.5, seed=None):
  state = None if seed is None else np.random.RandomState(seed)
  values = truncnorm.rvs(-2, 2, size=(batch_size, z_dim), random_state=state)
  return truncation * values 
開發者ID:ajbrock,項目名稱:BigGAN-PyTorch,代碼行數:6,代碼來源:biggan_v1.py

示例8: init_weights

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def init_weights(size):
    # we truncate the normal distribution at two times the standard deviation (which is 2)
    # to account for a smaller variance (but the same mean), we multiply the resulting matrix with he desired std
    return np.float32(truncnorm.rvs(-2, 2, size=size)*1.0/math.sqrt(float(size[0]))) 
開發者ID:SAP-samples,項目名稱:machine-learning-diff-private-federated-learning,代碼行數:6,代碼來源:mnist_inference.py

示例9: rotate_pts

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def rotate_pts(pts, max_angle,sample_type='rvs'):
    if sample_type=='rvs':
        angle=truncnorm.rvs(-2,2,loc=0,scale=max_angle/2)
    elif sample_type=='uniform':
        angle=np.random.uniform(-max_angle,max_angle)
    else: raise NotImplementedError
    rot_m = np.asarray([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]],np.float32)
    center=np.mean(pts,0,keepdims=True)
    return np.matmul(pts-center,rot_m.transpose())+center 
開發者ID:zju3dv,項目名稱:GIFT,代碼行數:11,代碼來源:homography.py

示例10: perspective_pts

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def perspective_pts(pts, h, w, perspective_amplitude=0.2, direction='lr', perspective_short_amplitude=0.2):
    displacement = np.random.uniform(-perspective_amplitude,perspective_amplitude) # truncnorm.rvs(-1, 1, loc=0, scale=perspective_amplitude)
    ds = np.random.uniform(-perspective_short_amplitude, 0)
    if direction=='lr':
        displacement*=h
        ds*=w
        pts += np.asarray([[ds, displacement],[ds, -displacement],[-ds, displacement],[-ds, -displacement]], np.float32)
    elif direction=='ud':
        displacement*=w
        ds*=h
        pts += np.asarray([[displacement, ds],[-displacement, -ds],[displacement, -ds], [-displacement, ds]], np.float32)
    else: raise NotImplementedError
    return pts 
開發者ID:zju3dv,項目名稱:GIFT,代碼行數:15,代碼來源:homography.py

示例11: var

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def var(self):
        """
        Calculate variance value of the random variable.

        :return: variance value of the random variable.
        """
        return 0


# TODO: Mixin this or something:
# class DelayedAdditionOf(MalleableDistribution):
#     """A HyperparameterDistribution (MalleableDistribution mixin) that """
#
#     def __init__(self, *dists):
#         self.dists = dists
#
#     def rvs(self):
#         rvss = [d.rvs if hasattr(d, 'rvs') else d for d in self.dists]
#         return sum(rvss)
#
#
# class MalleableDistribution(metaclass=ABCMeta):
#     """An hyperparameter distribution to which it's possible to do additional math using defaut python operators."""
#
#     def __add__(self, other):
#         return DelayedAdditionOf(self, other)
#
# max min + - / * % ** // == != < > <= >=
# 
開發者ID:Neuraxio,項目名稱:Neuraxle,代碼行數:31,代碼來源:distributions.py

示例12: _sample_from_gmm

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def _sample_from_gmm(
        self,
        parzen_estimator,  # type: _ParzenEstimator
        low,  # type: float
        high,  # type: float
        q=None,  # type: Optional[float]
        size=(),  # type: Tuple
    ):
        # type: (...) -> np.ndarray

        weights = parzen_estimator.weights
        mus = parzen_estimator.mus
        sigmas = parzen_estimator.sigmas
        weights, mus, sigmas = map(np.asarray, (weights, mus, sigmas))

        if low >= high:
            raise ValueError(
                "The 'low' should be lower than the 'high'. "
                "But (low, high) = ({}, {}).".format(low, high)
            )

        active = np.argmax(self._rng.multinomial(1, weights, size=size), axis=-1)
        trunc_low = (low - mus[active]) / sigmas[active]
        trunc_high = (high - mus[active]) / sigmas[active]
        while True:
            samples = truncnorm.rvs(
                trunc_low,
                trunc_high,
                size=size,
                loc=mus[active],
                scale=sigmas[active],
                random_state=self._rng,
            )
            if (samples < high).all():
                break

        if q is None:
            return samples
        else:
            return np.round(samples / q) * q 
開發者ID:optuna,項目名稱:optuna,代碼行數:42,代碼來源:sampler.py

示例13: act

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def act(self, qvals):
		eps = truncnorm.rvs((0 - self.eps_mean) / self.eps_std, (1 - self.eps_mean) / self.eps_std)
		if random.random() > eps:
			return np.argmax(qvals)
		return random.randrange(len(qvals))


# Continuous action-space policies (noise generators) ================================================================== 
開發者ID:danaugrs,項目名稱:huskarl,代碼行數:10,代碼來源:policy.py

示例14: truncated_normal_

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def truncated_normal_(tensor, mean=0.0, std=1.0):
    # PT doesn't have truncated normal.
    # https://discuss.pytorch.org/t/implementing-truncated-normal-initializer/4778/18
    values = truncnorm.rvs(-2, 2, size=tensor.shape)
    values = mean + std * values
    tensor.copy_(torch.from_numpy(values))
    return tensor 
開發者ID:learnables,項目名稱:learn2learn,代碼行數:9,代碼來源:models.py

示例15: create_scenario

# 需要導入模塊: from scipy.stats import truncnorm [as 別名]
# 或者: from scipy.stats.truncnorm import rvs [as 別名]
def create_scenario(self):
        scenario = {'meal': {'time': [],
                             'amount': []}}

        # Probability of taking each meal
        # [breakfast, snack1, lunch, snack2, dinner, snack3]
        prob = [0.95, 0.3, 0.95, 0.3, 0.95, 0.3]
        time_lb = np.array([5, 9, 10, 14, 16, 20]) * 60
        time_ub = np.array([9, 10, 14, 16, 20, 23]) * 60
        time_mu = np.array([7, 9.5, 12, 15, 18, 21.5]) * 60
        time_sigma = np.array([60, 30, 60, 30, 60, 30])
        amount_mu = [45, 10, 70, 10, 80, 10]
        amount_sigma = [10, 5, 10, 5, 10, 5]

        for p, tlb, tub, tbar, tsd, mbar, msd in zip(
                prob, time_lb, time_ub, time_mu, time_sigma,
                amount_mu, amount_sigma):
            if self.random_gen.rand() < p:
                tmeal = np.round(truncnorm.rvs(a=(tlb - tbar) / tsd,
                                               b=(tub - tbar) / tsd,
                                               loc=tbar,
                                               scale=tsd,
                                               random_state=self.random_gen))
                scenario['meal']['time'].append(tmeal)
                scenario['meal']['amount'].append(
                    max(round(self.random_gen.normal(mbar, msd)), 0))

        return scenario 
開發者ID:jxx123,項目名稱:simglucose,代碼行數:30,代碼來源:scenario_gen.py


注:本文中的scipy.stats.truncnorm.rvs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。