當前位置: 首頁>>代碼示例>>Python>>正文


Python t.sf方法代碼示例

本文整理匯總了Python中scipy.stats.t.sf方法的典型用法代碼示例。如果您正苦於以下問題:Python t.sf方法的具體用法?Python t.sf怎麽用?Python t.sf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats.t的用法示例。


在下文中一共展示了t.sf方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: pvalues

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import sf [as 別名]
def pvalues(self):
    #TODO: same for conditional and unconditional?
        df_resid = self.df_resid
        return t.sf(np.abs(self.tvalues), df_resid) * 2 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:6,代碼來源:arima_model.py

示例2: test_pvalue

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import sf [as 別名]
def test_pvalue(self):
        assert_almost_equal(self.Ttest.pvalue, student_t.sf(
            np.abs(self.res1.tvalues), self.res1.model.df_resid)*2,
                            DECIMAL_4) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:6,代碼來源:test_regression.py

示例3: _p_value_raw

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import sf [as 別名]
def _p_value_raw(self):
        """Returns the raw p values."""
        from scipy.stats import t

        return 2 * t.sf(np.fabs(self._t_stat_raw),
                        self._df_resid_raw) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:8,代碼來源:ols.py

示例4: p_z_norm

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import sf [as 別名]
def p_z_norm(est, se):
    '''Convert estimate and se to Z-score and P-value.'''
    try:
        Z = est / se
    except (FloatingPointError, ZeroDivisionError):
        Z = float('inf')

    P = chi2.sf(Z ** 2, 1, loc=0, scale=1)  # 0 if Z=inf
    return P, Z 
開發者ID:JonJala,項目名稱:mtag,代碼行數:11,代碼來源:regressions.py

示例5: student_t

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import sf [as 別名]
def student_t(t_input: Tuple[str, float],
              radius: float,
              size: float,
              ignore: bool) -> float:
    """
    Function to calculate the false positive fraction for a given sigma level (Mawet et al. 2014).

    Parameters
    ----------
    t_input : tuple(str, float)
        Tuple with the input type ('sigma' or 'fpf') and the input value.
    radius : float
        Aperture radius (in pixels).
    size : float
        Separation of the aperture center from the center of the frame (in pixels).
    ignore : bool
        Whether or not to ignore the immediate neighboring apertures of the point source to exclude
        potential self-subtraction lobes.

    Returns
    -------
    float
        False positive fraction (FPF).
    """

    num_ap = int(math.pi * radius / size)

    if ignore:
        num_ap -= 2

    # Note that the number of degrees of freedom is given by nu = n-1 with n the number of samples.
    # The number of samples is equal to the number of apertures minus 1 (i.e. the planet aperture).
    # See Section 3 of Mawet et al. (2014) for more details on the Student's t distribution.

    if t_input[0] == 'sigma':
        t_result = t.sf(t_input[1], num_ap-2, loc=0., scale=1.)

    elif t_input[0] == 'fpf':
        t_result = t.ppf(1. - t_input[1], num_ap-2, loc=0., scale=1.)

    else:
        raise ValueError('First element of t_input needs to be "sigma" or "fpf"!')

    return t_result 
開發者ID:PynPoint,項目名稱:PynPoint,代碼行數:46,代碼來源:analysis.py

示例6: bicor

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import sf [as 別名]
def bicor(x, y, c=9):
    """
    Biweight midcorrelation.

    Parameters
    ----------
    x, y : array_like
        First and second set of observations. x and y must be independent.
    c : float
        Tuning constant for the biweight estimator (default = 9.0).

    Returns
    -------
    r : float
        Correlation coefficient.
    pval : float
        Two-tailed p-value.

    Notes
    -----
    This function will return (np.nan, np.nan) if mad(x) == 0 or mad(y) == 0.

    References
    ----------
    https://en.wikipedia.org/wiki/Biweight_midcorrelation

    https://docs.astropy.org/en/stable/api/astropy.stats.biweight.biweight_midcovariance.html

    Langfelder, P., & Horvath, S. (2012). Fast R Functions for Robust
    Correlations and Hierarchical Clustering. Journal of Statistical Software,
    46(11). https://www.ncbi.nlm.nih.gov/pubmed/23050260
    """
    from scipy.stats import t
    # Calculate median
    nx = x.size
    x_median = np.median(x)
    y_median = np.median(y)
    # Raw median absolute deviation
    x_mad = np.median(np.abs(x - x_median))
    y_mad = np.median(np.abs(y - y_median))
    if x_mad == 0 or y_mad == 0:
        # From Langfelder and Horvath 2012:
        # "Strictly speaking, a call to bicor in R should return a missing
        # value if mad(x) = 0 or mad(y) = 0." This avoids division by zero.
        return np.nan, np.nan
    # Calculate weights
    u = (x - x_median) / (c * x_mad)
    v = (y - y_median) / (c * y_mad)
    w_x = (1 - u**2)**2 * ((1 - np.abs(u)) > 0)
    w_y = (1 - v**2)**2 * ((1 - np.abs(v)) > 0)
    # Normalize x and y by weights
    x_norm = (x - x_median) * w_x
    y_norm = (y - y_median) * w_y
    denom = (np.sqrt((x_norm**2).sum()) * np.sqrt((y_norm**2).sum()))
    # Calculate r, t and two-sided p-value
    r = (x_norm * y_norm).sum() / denom
    tval = r * np.sqrt((nx - 2) / (1 - r**2))
    pval = 2 * t.sf(abs(tval), nx - 2)
    return r, pval 
開發者ID:raphaelvallat,項目名稱:pingouin,代碼行數:61,代碼來源:correlation.py

示例7: _overlap_output

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import sf [as 別名]
def _overlap_output(self, category_names, overlap_matrix, M_annot, M_tot, print_coefficients):
        '''LD Score regression summary for overlapping categories.'''
        overlap_matrix_prop = np.zeros([self.n_annot,self.n_annot])
        for i in range(self.n_annot):
            overlap_matrix_prop[i, :] = overlap_matrix[i, :] / M_annot

        prop_hsq_overlap = np.dot(
            overlap_matrix_prop, self.prop.T).reshape((1, self.n_annot))
        prop_hsq_overlap_var = np.diag(
            np.dot(np.dot(overlap_matrix_prop, self.prop_cov), overlap_matrix_prop.T))
        prop_hsq_overlap_se = np.sqrt(
            np.maximum(0, prop_hsq_overlap_var)).reshape((1, self.n_annot))
        one_d_convert = lambda x: np.array(x).reshape(np.prod(x.shape))
        prop_M_overlap = M_annot / M_tot
        enrichment = prop_hsq_overlap / prop_M_overlap
        enrichment_se = prop_hsq_overlap_se / prop_M_overlap
        overlap_matrix_diff = np.zeros([self.n_annot,self.n_annot])
        for i in range(self.n_annot):
            if not M_tot == M_annot[0,i]:
                overlap_matrix_diff[i, :] = overlap_matrix[i,:]/M_annot[0,i] - \
                    (M_annot - overlap_matrix[i,:]) / (M_tot-M_annot[0,i])

        diff_est = np.dot(overlap_matrix_diff,self.coef)
        diff_cov = np.dot(np.dot(overlap_matrix_diff,self.coef_cov),overlap_matrix_diff.T)
        diff_se = np.sqrt(np.diag(diff_cov))
        diff_p = ['NA' if diff_se[i]==0 else 2*tdist.sf(abs(diff_est[i]/diff_se[i]),self.n_blocks) \
            for i in range(self.n_annot)]

        df = pd.DataFrame({
            'Category': category_names,
            'Prop._SNPs': one_d_convert(prop_M_overlap),
            'Prop._h2': one_d_convert(prop_hsq_overlap),
            'Prop._h2_std_error': one_d_convert(prop_hsq_overlap_se),
            'Enrichment': one_d_convert(enrichment),
            'Enrichment_std_error': one_d_convert(enrichment_se),
            'Enrichment_p':diff_p,
            'Coefficient': one_d_convert(self.coef),
            'Coefficient_std_error': self.coef_se,
            'Coefficient_z-score': one_d_convert(self.coef) / one_d_convert(self.coef_se)
        })
        if print_coefficients:
            df = df[['Category', 'Prop._SNPs', 'Prop._h2', 'Prop._h2_std_error',
                    'Enrichment','Enrichment_std_error', 'Enrichment_p',
                     'Coefficient', 'Coefficient_std_error','Coefficient_z-score']]
        else:
            df = df[['Category', 'Prop._SNPs', 'Prop._h2', 'Prop._h2_std_error',
                    'Enrichment','Enrichment_std_error', 'Enrichment_p']]
        return df 
開發者ID:JonJala,項目名稱:mtag,代碼行數:50,代碼來源:regressions.py

示例8: full_glm_results

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import sf [as 別名]
def full_glm_results(endog_arr, exog_vars, return_resids = False, only_tvals = False, PCA_whiten = False, ZCA_whiten = False,  orthogonalize = True, orthogNear = False, orthog_GramSchmidt = False):
	if np.mean(exog_vars[:,0])!=1:
		print("Warning: the intercept is not included as the first column in your exogenous variable array")
	n, num_depv = endog_arr.shape
	k = exog_vars.shape[1]

	if orthogonalize:
		exog_vars = sm.add_constant(orthog_columns(exog_vars[:,1:]))
	elif orthogNear:
		exog_vars = sm.add_constant(ortho_neareast(exog_vars[:,1:]))
	elif orthog_GramSchmidt: # for when order matters AKA type 2 sum of squares
		exog_vars = sm.add_constant(gram_schmidt_orthonorm(exog_vars[:,1:]))
	else:
		pass

	invXX = np.linalg.inv(np.dot(exog_vars.T, exog_vars))

	DFbetween = k - 1 # aka df model
	DFwithin = n - k # aka df residuals
	DFtotal = n - 1
	if PCA_whiten:
		endog_arr = PCAwhiten(endog_arr)
	if ZCA_whiten:
		endog_arr = ZCAwhiten(endog_arr)

	a = cy_lin_lstsqr_mat(exog_vars, endog_arr)
	sigma2 = np.sum((endog_arr - np.dot(exog_vars,a))**2,axis=0) / (n - k)
	se = se_of_slope(num_depv,invXX,sigma2,k)

	if only_tvals:
		return a / se
	else:
		resids = endog_arr - np.dot(exog_vars,a)
		RSS = np.sum(resids**2,axis=0)
		TSS = np.sum((endog_arr - np.mean(endog_arr, axis =0))**2, axis = 0)
		R2 = 1 - (RSS/TSS)

		std_y = np.sqrt(TSS/DFtotal)
		R2_adj = 1 - ((1-R2)*DFtotal/(DFwithin))
		Fvalues = ((TSS-RSS)/(DFbetween))/(RSS/DFwithin)
		Tvalues = a / se
		Pvalues = t.sf(np.abs(Tvalues), DFtotal)*2
		if return_resids:
			fitted = np.dot(exog_vars, a)
			return (Fvalues, Tvalues, Pvalues, R2, R2_adj, np.array(resids), np.array(fitted))
		else:
			return (Fvalues, Tvalues, Pvalues, R2, R2_adj) 
開發者ID:trislett,項目名稱:TFCE_mediation,代碼行數:49,代碼來源:tm_massunivariatemodels.py


注:本文中的scipy.stats.t.sf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。