本文整理匯總了Python中scipy.stats.t.ppf方法的典型用法代碼示例。如果您正苦於以下問題:Python t.ppf方法的具體用法?Python t.ppf怎麽用?Python t.ppf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats.t
的用法示例。
在下文中一共展示了t.ppf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _t_value
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def _t_value(self):
r"""
Returns the critical t-statistic given the input alpha-level (defaults to 0.05).
Returns
-------
tval : float
The critical t-value for using in computing the Least Significant Difference.
Notes
-----
Scipy's :code:`t.ppf` method is used to compute the critical t-value.
"""
tval = t.ppf(1 - self.alpha / 2, self.n - self.k)
return tval
示例2: _t
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def _t(u, rho, nu):
d = u.shape[1]
nu = float(nu)
try:
R = cholesky(rho)
except LinAlgError:
raise ValueError('Provided Rho matrix is not Positive Definite!')
ticdf = t.ppf(u, nu)
z = solve(R,ticdf.T)
z = z.T
logSqrtDetRho = np.sum(np.log(np.diag(R)))
const = gammaln((nu+d)/2.0) + (d-1)*gammaln(nu/2.0) - d*gammaln((nu+1)/2.0) - logSqrtDetRho
sq = np.power(z,2)
summer = np.sum(np.power(z,2),axis=1)
numer = -((nu+d)/2.0) * np.log(1.0 + np.sum(np.power(z,2),axis=1)/nu)
denom = np.sum(-((nu+1)/2) * np.log(1 + (np.power(ticdf,2))/nu), axis=1)
y = np.exp(const + numer - denom)
return y
示例3: isThresholdSimple
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def isThresholdSimple(N,M,p,c,l,myRho):
mu = getOptimalMeanShift(c,p,l,myRho)
theta = np.zeros(M)
cgf = np.zeros(M)
qZ = np.zeros([M,N])
e = np.random.normal(0,1,[M,N])
G = np.transpose(np.tile(np.random.normal(mu,1,M),(N,1)))
num = (norm.ppf(p)*np.ones((M,1)))-np.sqrt(myRho)*G
pZ = norm.cdf(np.divide(num,np.sqrt(1-myRho)))
for n in range(0,M):
theta[n] = vc.getSaddlePoint(pZ[n,:],c,l,0.0)
qZ[n,:] = getQ(theta[n],c,pZ[n,:])
cgf[n] = vc.computeCGF(theta[n],pZ[n,:],c)
I = np.transpose(1*np.less(e,norm.ppf(qZ)))
L = np.dot(c,I)
rn = np.exp(-mu*G[:,0]+0.5*(mu**2))*computeRND(theta,L,cgf)
tailProb = np.mean(np.multiply(L>l,rn))
eShortfall = np.mean(np.multiply(L*(L>l),rn))/tailProb
return tailProb,eShortfall
示例4: mcThresholdTDecomposition
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def mcThresholdTDecomposition(N,M,S,p,c,rho,nu,isT,myAlpha):
contributions = np.zeros([N,S,2])
var = np.zeros(S)
es = np.zeros(S)
K = myT.ppf(p,nu)*np.ones((M,1))
for s in range(0,S):
print("Iteration: %d" % (s+1))
Y = th.getY(N,M,p,rho,nu,isT)
myD = 1*np.less(Y,K)
myLoss = np.sort(np.dot(myD,c),axis=None)
el,ul,var[s],es[s]=util.computeRiskMeasures(M,myLoss,np.array([myAlpha]))
varVector = c*myD[np.dot(myD,c)==var[s],:]
esVector = c*myD[np.dot(myD,c)>=var[s],:]
contributions[:,s,0] = np.sum(varVector,0)/varVector.shape[0]
contributions[:,s,1] = np.sum(esVector,0)/esVector.shape[0]
return contributions,var,es
示例5: mcThresholdGDecomposition
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def mcThresholdGDecomposition(N,M,S,p,c,rho,nu,isT,myAlpha):
contributions = np.zeros([N,S,2])
var = np.zeros(S)
es = np.zeros(S)
K = norm.ppf(p)*np.ones((M,1))
for s in range(0,S):
print("Iteration: %d" % (s+1))
Y = th.getY(N,M,p,rho,nu,isT)
myD = 1*np.less(Y,K)
myLoss = np.sort(np.dot(myD,c),axis=None)
el,ul,var[s],es[s]=util.computeRiskMeasures(M,myLoss,np.array([myAlpha]))
varVector = c*myD[np.dot(myD,c)==var[s],:]
esVector = c*myD[np.dot(myD,c)>=var[s],:]
contributions[:,s,0] = np.sum(varVector,0)/varVector.shape[0]
contributions[:,s,1] = np.sum(esVector,0)/esVector.shape[0]
return contributions,var,es
示例6: getPy
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def getPy(p,y,p1,p2,whichModel,v=0):
if whichModel==0: # Gaussian threshold
return th.computeP(p,p1,y)
elif whichModel==1: # beta
return y*np.ones(len(p))
elif whichModel==2: # CreditRisk+
v = p*(1-p1+p1*y)
return np.maximum(np.minimum(1-np.exp(-v),0.999),0.0001)
elif whichModel==3: # logit
return np.reciprocal(1+np.exp(-(p1+p2*y)))
elif whichModel==4: # probit
return norm.ppf(p1+p2*y)
elif whichModel==5: # Weibull
return np.maximum(np.minimum(1-np.exp(-y),0.999),0.0001)*np.ones(len(p))
if whichModel==6: # t threshold
return th.computeP_t(p,p1,y,v,p2)
示例7: _clopper_pearson_interval
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def _clopper_pearson_interval(self):
r"""
Computes the Clopper-Pearson 'exact' confidence interval.
References
----------
Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval.
In Wikipedia, The Free Encyclopedia. Retrieved 00:40, August 15, 2018,
from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725
"""
p = self.x / self.n
if self.alternative == 'less':
lower_bound = 0.0
upper_bound = beta.ppf(1 - self.alpha, self.x + 1, self.n - self.x)
elif self.alternative == 'greater':
upper_bound = 1.0
lower_bound = beta.ppf(self.alpha, self.x, self.n - self.x + 1)
else:
lower_bound = beta.ppf(self.alpha / 2, self.x, self.n - self.x + 1)
upper_bound = beta.ppf(1 - self.alpha / 2, self.x + 1, self.n - self.x)
clopper_pearson_interval = {
'probability of success': p,
'conf level': 1 - self.alpha,
'interval': (lower_bound, upper_bound)
}
return clopper_pearson_interval
示例8: _normal_scores
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def _normal_scores(self):
r"""
Calculates the normal scores used in the Van der Waerden test.
Returns
-------
score_matrix : array-like
Numpy ndarray representing the data matrix with ranked observations and computed normal test scores.
Notes
-----
Let :math:`n_j`, be the number of samples for each of the :math:`k` groups where :math:`j` is the j-th group.
:math:`N` is the number of total samples in all groups, while :math:`X_{ij}` is the i-th value of the j-th
group. The normal scores used in the Van der Waerden test are calculated as:
.. math::
A_{ij} = \phi^{-1} \left( \frac{R \left( X_{ij} \right)}{N + 1} \right)
References
----------
Conover, W. J. (1999). Practical Nonparameteric Statistics (Third ed.). Wiley.
Wikipedia contributors. "Van der Waerden test." Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 8 Feb. 2017. Web. 8 Mar. 2020.
"""
aij = norm.ppf(list(self.ranked_matrix[:, 2] / (self.n + 1)))
score_matrix = np.column_stack([self.ranked_matrix, aij])
return score_matrix
示例9: _bca
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def _bca(ab_estimates, sample_point, n_boot, alpha=0.05):
"""Get (1 - alpha) * 100 bias-corrected confidence interval estimate
Note that this is similar to the "cper" module implemented in
:py:func:`pingouin.compute_bootci`.
Parameters
----------
ab_estimates : 1d array-like
Array with bootstrap estimates for each sample.
sample_point : float
Indirect effect point estimate based on full sample.
n_boot : int
Number of bootstrap samples
alpha : float
Alpha for confidence interval
Returns
-------
CI : 1d array-like
Lower limit and upper limit bias-corrected confidence interval
estimates.
"""
# Bias of bootstrap estimates
z0 = norm.ppf(np.sum(ab_estimates < sample_point) / n_boot)
# Adjusted intervals
adjusted_ll = norm.cdf(2 * z0 + norm.ppf(alpha / 2)) * 100
adjusted_ul = norm.cdf(2 * z0 + norm.ppf(1 - alpha / 2)) * 100
ll = np.percentile(ab_estimates, q=adjusted_ll)
ul = np.percentile(ab_estimates, q=adjusted_ul)
return np.array([ll, ul])
示例10: CVaR
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def CVaR(mu, sig, alpha=0.01):
return alpha ** -1 * norm.pdf(norm.ppf(alpha)) * sig - mu
# Student T CVaR
示例11: TCVaR
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def TCVaR(mu, sig, nu, h=1, alpha=0.01):
xanu = t.ppf(alpha, nu)
return -1 / alpha * (1 - nu) ** (-1) * (nu - 2 + xanu ** 2) * t.pdf(xanu, nu) * sig - h * mu
示例12: cdf
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def cdf(self, x):
self._check_dimension(x)
return multivariate_normal.cdf([ norm.ppf(u) for u in x ], cov=self.R)
示例13: pdf
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def pdf(self, x):
self._check_dimension(x)
u_i = norm.ppf(x)
return self._R_det**(-0.5) * np.exp(-0.5 * np.dot(u_i, np.dot(self._R_inv - np.identity(self.dim), u_i)))
示例14: pdf_param
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def pdf_param(self, x, R):
self._check_dimension(x)
if self.dim == 2 and not(hasattr(R, '__len__')):
R = [R]
if len(np.asarray(R).shape) == 2 and len(R) != self.dim:
raise ValueError("Expected covariance matrix of dimension {0}.".format(self.dim))
u = norm.ppf(x)
cov = np.ones([ self.dim, self.dim ])
idx = 0
if len(np.asarray(R).shape) <= 1:
if len(R) == self.dim * (self.dim - 1) / 2:
for j in range(self.dim):
for i in range(j + 1, self.dim):
cov[j][i] = R[idx]
cov[i][j] = R[idx]
idx += 1
else:
raise ValueError("Expected covariance matrix, get an array.")
if self.dim == 2:
RDet = cov[0][0] * cov[1][1] - cov[0][1]**2
RInv = 1. / RDet * np.asarray([[ cov[1][1], -cov[0][1]], [ -cov[0][1], cov[0][0] ]])
else:
RDet = np.linalg.det(cov)
RInv = np.linalg.inv(cov)
return [ RDet**(-0.5) * np.exp(-0.5 * np.dot(u_i, np.dot(RInv - np.identity(self.dim), u_i))) for u_i in u ]
示例15: quantile
# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import ppf [as 別名]
def quantile(self, x):
return multivariate_normal.ppf([ norm.ppf(u) for u in x ], cov=self.R)