本文整理匯總了Python中scipy.stats.t方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.t方法的具體用法?Python stats.t怎麽用?Python stats.t使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.t方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def __init__(self, endog, exog=None, **kwargs):
missing = kwargs.pop('missing', 'none')
hasconst = kwargs.pop('hasconst', None)
self.data = self._handle_data(endog, exog, missing, hasconst,
**kwargs)
self.k_constant = self.data.k_constant
self.exog = self.data.exog
self.endog = self.data.endog
self._data_attr = []
self._data_attr.extend(['exog', 'endog', 'data.exog', 'data.endog'])
if 'formula' not in kwargs: # won't be able to unpickle without these
self._data_attr.extend(['data.orig_endog', 'data.orig_exog'])
# store keys for extras if we need to recreate model instance
# we don't need 'missing', maybe we need 'hasconst'
self._init_keys = list(kwargs.keys())
if hasconst is not None:
self._init_keys.append('hasconst')
示例2: __init__
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def __init__(self, predicted_mean, var_pred_mean, var_resid=None,
df=None, dist=None, row_labels=None, linpred=None, link=None):
# TODO: is var_resid used? drop from arguments?
self.predicted_mean = predicted_mean
self.var_pred_mean = var_pred_mean
self.df = df
self.var_resid = var_resid
self.row_labels = row_labels
self.linpred = linpred
self.link = link
if dist is None or dist == 'norm':
self.dist = stats.norm
self.dist_args = ()
elif dist == 't':
self.dist = stats.t
self.dist_args = (self.df,)
else:
self.dist = dist
self.dist_args = ()
示例3: summary_frame
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def summary_frame(self, what='all', alpha=0.05):
# TODO: finish and cleanup
import pandas as pd
from statsmodels.compat.collections import OrderedDict
#ci_obs = self.conf_int(alpha=alpha, obs=True) # need to split
ci_mean = self.conf_int(alpha=alpha)
to_include = OrderedDict()
to_include['mean'] = self.predicted_mean
to_include['mean_se'] = self.se_mean
to_include['mean_ci_lower'] = ci_mean[:, 0]
to_include['mean_ci_upper'] = ci_mean[:, 1]
self.table = to_include
#OrderedDict doesn't work to preserve sequence
# pandas dict doesn't handle 2d_array
#data = np.column_stack(list(to_include.values()))
#names = ....
res = pd.DataFrame(to_include, index=self.row_labels,
columns=to_include.keys())
return res
示例4: gammamomentcond2
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def gammamomentcond2(distfn, params, mom2, quantile=None):
'''estimate distribution parameters based method of moments (mean,
variance) for distributions with 1 shape parameter and fixed loc=0.
Returns
-------
difference : array
difference between theoretical and empirical moments
Notes
-----
first test version, quantile argument not used
The only difference to previous function is return type.
'''
alpha, scale = params
mom2s = distfn.stats(alpha, 0.,scale)
return np.array(mom2)-mom2s
######### fsolve doesn't move in small samples, fmin not very accurate
示例5: __init__
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def __init__(self):
#super(SkewT_gen,self).__init__(
distributions.rv_continuous.__init__(self,
name = 'Skew T distribution', shapes = 'df, alpha',
extradoc = '''
Skewed T distribution by Azzalini, A. & Capitanio, A. (2003)_
the pdf is given by:
pdf(x) = 2.0 * t.pdf(x, df) * t.cdf(df+1, alpha*x*np.sqrt((1+df)/(x**2+df)))
with alpha >=0
Note: different from skewed t distribution by Hansen 1999
.._
Azzalini, A. & Capitanio, A. (2003), Distributions generated by perturbation of
symmetry with emphasis on a multivariate skew-t distribution,
appears in J.Roy.Statist.Soc, series B, vol.65, pp.367-389
''' )
示例6: __init__
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def __init__(self, predicted_mean, var_pred_mean, var_resid,
df=None, dist=None, row_labels=None):
self.predicted_mean = predicted_mean
self.var_pred_mean = var_pred_mean
self.df = df
self.var_resid = var_resid
self.row_labels = row_labels
if dist is None or dist == 'norm':
self.dist = stats.norm
self.dist_args = ()
elif dist == 't':
self.dist = stats.t
self.dist_args = (self.df,)
else:
self.dist = dist
self.dist_args = ()
示例7: summary_frame
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def summary_frame(self, what='all', alpha=0.05):
# TODO: finish and cleanup
import pandas as pd
from statsmodels.compat.collections import OrderedDict
ci_obs = self.conf_int(alpha=alpha, obs=True) # need to split
ci_mean = self.conf_int(alpha=alpha, obs=False)
to_include = OrderedDict()
to_include['mean'] = self.predicted_mean
to_include['mean_se'] = self.se_mean
to_include['mean_ci_lower'] = ci_mean[:, 0]
to_include['mean_ci_upper'] = ci_mean[:, 1]
to_include['obs_ci_lower'] = ci_obs[:, 0]
to_include['obs_ci_upper'] = ci_obs[:, 1]
self.table = to_include
#OrderedDict doesn't work to preserve sequence
# pandas dict doesn't handle 2d_array
#data = np.column_stack(list(to_include.values()))
#names = ....
res = pd.DataFrame(to_include, index=self.row_labels,
columns=to_include.keys())
return res
示例8: test_dist_keyword
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def test_dist_keyword(self):
np.random.seed(12345)
x = stats.norm.rvs(size=20)
osm1, osr1 = stats.probplot(x, fit=False, dist='t', sparams=(3,))
osm2, osr2 = stats.probplot(x, fit=False, dist=stats.t, sparams=(3,))
assert_allclose(osm1, osm2)
assert_allclose(osr1, osr2)
assert_raises(ValueError, stats.probplot, x, dist='wrong-dist-name')
assert_raises(AttributeError, stats.probplot, x, dist=[])
class custom_dist(object):
"""Some class that looks just enough like a distribution."""
def ppf(self, q):
return stats.norm.ppf(q, loc=2)
osm1, osr1 = stats.probplot(x, sparams=(2,), fit=False)
osm2, osr2 = stats.probplot(x, dist=custom_dist(), fit=False)
assert_allclose(osm1, osm2)
assert_allclose(osr1, osr2)
示例9: test_plot_kwarg
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def test_plot_kwarg(self):
np.random.seed(7654321)
fig = plt.figure()
fig.add_subplot(111)
x = stats.t.rvs(3, size=100)
res1, fitres1 = stats.probplot(x, plot=plt)
plt.close()
res2, fitres2 = stats.probplot(x, plot=None)
res3 = stats.probplot(x, fit=False, plot=plt)
plt.close()
res4 = stats.probplot(x, fit=False, plot=None)
# Check that results are consistent between combinations of `fit` and
# `plot` keywords.
assert_(len(res1) == len(res2) == len(res3) == len(res4) == 2)
assert_allclose(res1, res2)
assert_allclose(res1, res3)
assert_allclose(res1, res4)
assert_allclose(fitres1, fitres2)
# Check that a Matplotlib Axes object is accepted
fig = plt.figure()
ax = fig.add_subplot(111)
stats.probplot(x, fit=False, plot=ax)
plt.close()
示例10: test_alpha
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def test_alpha(self):
np.random.seed(1234)
x = stats.loggamma.rvs(5, size=50) + 5
# Some regular values for alpha, on a small sample size
_, _, interval = stats.boxcox(x, alpha=0.75)
assert_allclose(interval, [4.004485780226041, 5.138756355035744])
_, _, interval = stats.boxcox(x, alpha=0.05)
assert_allclose(interval, [1.2138178554857557, 8.209033272375663])
# Try some extreme values, see we don't hit the N=500 limit
x = stats.loggamma.rvs(7, size=500) + 15
_, _, interval = stats.boxcox(x, alpha=0.001)
assert_allclose(interval, [0.3988867, 11.40553131])
_, _, interval = stats.boxcox(x, alpha=0.999)
assert_allclose(interval, [5.83316246, 5.83735292])
示例11: loadQualityModel
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def loadQualityModel(self):
"""Loads the coefficients from the rpy2 model estimated previously"""
try:
execPath = os.path.dirname(os.path.realpath(__file__))+'/'
except:
execPath = os.getcwd()+'/'
if os.path.exists(self.qualityModelFn):
fn = self.qualityModelFn
elif os.path.exists(execPath+self.qualityModelFn):
fn = execPath+self.qualityModelFn
else:
raise Exception('Quality model coefficients file %s not found' % self.qualityModelFn)
with open(fn) as f:
coeffLines = f.read().split('\n')
for ii, cl in enumerate(coeffLines):
if 'intercept' in cl.lower():
coeffLines[ii] = 'intercept\t'+cl.split()[1]
break
raise Exception('Quality model %s must include an intercept' % self.qualityModelFn)
self.qualityModelCoeffs = dict([(cl.split()[0], float(cl.split()[1])) for cl in coeffLines if len(cl.split()) == 2])
knownCols = ['intercept', 'frechet_dist', 'll_dist_mean', 'll_dist_min', 'll_topol_mean', 'll_topol_min', 'll_distratio_mean', 'll_distratio_min', 'gpsMatchRatio', 'matchGpsRatio']
if any([cc not in knownCols for cc in self.qualityModelCoeffs]):
raise Exception('Error in quality model %s. Coefficient name not understood' % self.qualityModelFn)
示例12: _handle_data
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def _handle_data(self, endog, exog, missing, hasconst, **kwargs):
data = handle_data(endog, exog, missing, hasconst, **kwargs)
# kwargs arrays could have changed, easier to just attach here
for key in kwargs:
if key in ['design_info', 'formula']: # leave attached to data
continue
# pop so we don't start keeping all these twice or references
try:
setattr(self, key, data.__dict__.pop(key))
except KeyError: # panel already pops keys in data handling
pass
return data
示例13: fit
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def fit(self, start_params=None, method='nm', maxiter=500, full_output=1,
disp=1, callback=None, retall=0, **kwargs):
"""
Fit the model using maximum likelihood.
The rest of the docstring is from
statsmodels.LikelihoodModel.fit
"""
if start_params is None:
if hasattr(self, 'start_params'):
start_params = self.start_params
else:
start_params = 0.1 * np.ones(self.nparams)
fit_method = super(GenericLikelihoodModel, self).fit
mlefit = fit_method(start_params=start_params,
method=method, maxiter=maxiter,
full_output=full_output,
disp=disp, callback=callback, **kwargs)
genericmlefit = GenericLikelihoodModelResults(self, mlefit)
# amend param names
exog_names = [] if (self.exog_names is None) else self.exog_names
k_miss = len(exog_names) - len(mlefit.params)
if not k_miss == 0:
if k_miss < 0:
self._set_extra_params_names(['par%d' % i
for i in range(-k_miss)])
else:
# I don't want to raise after we have already fit()
import warnings
warnings.warn('more exog_names than parameters', ValueWarning)
return genericmlefit
# fit.__doc__ += LikelihoodModel.fit.__doc__
示例14: tvalues
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def tvalues(self):
"""
Return the t-statistic for a given parameter estimate.
"""
return self.params / self.bse
示例15: pvalues
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import t [as 別名]
def pvalues(self):
if self.use_t:
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
return stats.t.sf(np.abs(self.tvalues), df_resid) * 2
else:
return stats.norm.sf(np.abs(self.tvalues)) * 2