當前位置: 首頁>>代碼示例>>Python>>正文


Python t.cdf方法代碼示例

本文整理匯總了Python中scipy.stats.t.cdf方法的典型用法代碼示例。如果您正苦於以下問題:Python t.cdf方法的具體用法?Python t.cdf怎麽用?Python t.cdf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats.t的用法示例。


在下文中一共展示了t.cdf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_two_sample_students_test

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def test_two_sample_students_test(self):

        sal_a = self.data.loc[self.data['discipline'] == 'A']['salary']
        sal_b = self.data.loc[self.data['discipline'] == 'B']['salary']

        ttest = tTest(y1=sal_a, y2=sal_b, var_equal=True)

        test_summary = ttest.test_summary

        assert_almost_equal(test_summary['Sample 1 Mean'], np.mean(sal_a))
        assert_almost_equal(test_summary['Sample 2 Mean'], np.mean(sal_b))
        assert_almost_equal(test_summary['t-statistic'], -3.1485647713976195)
        assert_almost_equal(test_summary['p-value'], t.cdf(test_summary['t-statistic'],
                                                                      test_summary['degrees of freedom']) * 2)

        assert test_summary['alternative'] == 'two-sided'
        assert test_summary['test description'] == "Two-Sample Student's t-test"

        assert len(sal_a) + len(sal_b) - 2 == test_summary['degrees of freedom'] 
開發者ID:aschleg,項目名稱:hypothetical,代碼行數:21,代碼來源:test_hypothesis.py

示例2: test_paired_sample_test

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def test_paired_sample_test(self):
        sal_a = self.data.loc[self.data['discipline'] == 'A']['salary']
        sal_b = self.data.loc[self.data['discipline'] == 'B']['salary']
        sal_b2 = sal_b[0:len(sal_a)]

        ttest = tTest(y1=sal_a, y2=sal_b2, paired=True)

        test_summary = ttest.test_summary

        assert_almost_equal(test_summary['Sample Difference Mean'], np.mean(np.array(sal_a) - np.array(sal_b2)))
        assert_almost_equal(test_summary['t-statistic'], -2.3158121700626406)
        assert_almost_equal(test_summary['p-value'], t.cdf(test_summary['t-statistic'],
                                                                      test_summary['degrees of freedom']) * 2)

        assert test_summary['alternative'] == 'two-sided'
        assert test_summary['test description'] == 'Paired t-test'

        assert len(sal_a) - 1 == test_summary['degrees of freedom'] 
開發者ID:aschleg,項目名稱:hypothetical,代碼行數:20,代碼來源:test_hypothesis.py

示例3: ProbabilityImprovement

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def ProbabilityImprovement(self, tau, mean, std):
        """
        Probability of Improvement acquisition function.

        Parameters
        ----------
        tau: float
            Best observed function evaluation.
        mean: float
            Point mean of the posterior process.
        std: float
            Point std of the posterior process.

        Returns
        -------
        float
            Probability of improvement.
        """
        z = (mean - tau - self.eps) / (std + self.eps)
        return norm.cdf(z) 
開發者ID:josejimenezluna,項目名稱:pyGPGO,代碼行數:22,代碼來源:acquisition.py

示例4: ExpectedImprovement

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def ExpectedImprovement(self, tau, mean, std):
        """
        Expected Improvement acquisition function.

        Parameters
        ----------
        tau: float
            Best observed function evaluation.
        mean: float
            Point mean of the posterior process.
        std: float
            Point std of the posterior process.

        Returns
        -------
        float
            Expected improvement.
        """
        z = (mean - tau - self.eps) / (std + self.eps)
        return (mean - tau) * norm.cdf(z) + std * norm.pdf(z)[0] 
開發者ID:josejimenezluna,項目名稱:pyGPGO,代碼行數:22,代碼來源:acquisition.py

示例5: tExpectedImprovement

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def tExpectedImprovement(self, tau, mean, std, nu=3.0):
        """
        Expected Improvement acquisition function. Only to be used with `tStudentProcess` surrogate.

        Parameters
        ----------
        tau: float
            Best observed function evaluation.
        mean: float
            Point mean of the posterior process.
        std: float
            Point std of the posterior process.

        Returns
        -------
        float
            Expected improvement.
        """
        gamma = (mean - tau - self.eps) / (std + self.eps)
        return gamma * std * t.cdf(gamma, df=nu) + std * (1 + (gamma ** 2 - 1)/(nu - 1)) * t.pdf(gamma, df=nu) 
開發者ID:josejimenezluna,項目名稱:pyGPGO,代碼行數:22,代碼來源:acquisition.py

示例6: summarize_bootstrap

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def summarize_bootstrap(data, save_weights=False):
    """ Calculate summary of bootstrap samples

    Args:
        sample: (Brain_Data) Brain_Data instance of samples
        save_weights: (bool) save bootstrap weights

    Returns:
        output: (dict) dictionary of Brain_Data summary images

    """

    # Calculate SE of bootstraps
    wstd = data.std()
    wmean = data.mean()
    wz = deepcopy(wmean)
    wz.data = wmean.data / wstd.data
    wp = deepcopy(wmean)
    wp.data = 2*(1-norm.cdf(np.abs(wz.data)))
    # Create outputs
    output = {'Z': wz, 'p': wp, 'mean': wmean}
    if save_weights:
        output['samples'] = data
    return output 
開發者ID:cosanlab,項目名稱:nltools,代碼行數:26,代碼來源:stats.py

示例7: whelchs_t

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def whelchs_t(a_mu, a_var, b_mu, b_var, a_n, b_n):
    """

    :param np.ndarray a_mu:
    :param np.ndarray a_var:
    :param np.ndarray b_mu:
    :param np.ndarray b_var:
    :param int a_n:
    :param int b_n:
    :return float, float: statistic and p-value
    """
    df = whelch_satterthwaite_df(a_var, b_var, a_n, b_n)
    numerator = a_mu - b_mu  # (samples, genes)
    denominator = np.sqrt(a_var + b_var)  # (samples, genes)
    statistic = numerator / denominator  # (samples, genes)

    # statistic has NaNs where there are no observations of a or b (DivideByZeroError)
    statistic[np.isnan(statistic)] = 0
    median_statistic = np.median(np.abs(statistic), axis=0)
    p = (1 - t.cdf(median_statistic, df)) * 2  # p-value
    ci_95 = np.percentile(np.abs(statistic), [2.5, 97.5], axis=0).T

    return median_statistic, p, ci_95 
開發者ID:ambrosejcarr,項目名稱:seqc,代碼行數:25,代碼來源:ttest.py

示例8: calc_prob_mom

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def calc_prob_mom(returns, other_returns):
    """
    `Probabilistic momentum <http://cssanalytics.wordpress.com/2014/01/28/are-simple-momentum-strategies-too-dumb-introducing-probabilistic-momentum/>`_ (see `momentum investing <https://www.investopedia.com/terms/m/momentum_investing.asp>`_)

    Basically the "probability or confidence that one asset
    is going to outperform the other".

    Source:
        http://cssanalytics.wordpress.com/2014/01/28/are-simple-momentum-strategies-too-dumb-introducing-probabilistic-momentum/ # NOQA
    """
    return t.cdf(returns.calc_information_ratio(other_returns),
                 len(returns) - 1) 
開發者ID:pmorissette,項目名稱:ffn,代碼行數:14,代碼來源:core.py

示例9: test_two_sample_welch_test

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def test_two_sample_welch_test(self):

        sal_a = self.data.loc[self.data['discipline'] == 'A']['salary']
        sal_b = self.data.loc[self.data['discipline'] == 'B']['salary']

        ttest = tTest(y1=sal_a, y2=sal_b)

        test_summary = ttest.test_summary

        assert_almost_equal(test_summary['Sample 1 Mean'], np.mean(sal_a))
        assert_almost_equal(test_summary['Sample 2 Mean'], np.mean(sal_b))
        assert_almost_equal(test_summary['t-statistic'], -3.1386989278486013)
        assert_almost_equal(test_summary['degrees of freedom'], 377.89897288941387)
        assert_almost_equal(test_summary['p-value'], t.cdf(test_summary['t-statistic'],
                                                                      test_summary['degrees of freedom']) * 2)

        assert test_summary['alternative'] == 'two-sided'
        assert test_summary['test description'] == "Two-Sample Welch's t-test"

        ttest_group = tTest(group=self.data['discipline'], y1=self.data['salary'])
        test_group_summary = ttest_group.test_summary

        assert_almost_equal(test_summary['Sample 1 Mean'], test_group_summary['Sample 1 Mean'])
        assert_almost_equal(test_summary['Sample 2 Mean'], test_group_summary['Sample 2 Mean'])
        assert_almost_equal(test_summary['p-value'], test_group_summary['p-value'])
        assert_almost_equal(test_summary['degrees of freedom'], test_group_summary['degrees of freedom'], 5)
        assert_almost_equal(test_summary['t-statistic'], test_group_summary['t-statistic'])

        assert test_group_summary['alternative'] == 'two-sided'
        assert test_group_summary['test description'] == "Two-Sample Welch's t-test" 
開發者ID:aschleg,項目名稱:hypothetical,代碼行數:32,代碼來源:test_hypothesis.py

示例10: _compute_pvalues

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def _compute_pvalues(self):
        """
        Compute p-values of coefficients (and intercept if fit_intercept==True)
        """
        tstat_coef = self.coef / self.se_coef
        self.pvalue_coef = 2 * t.cdf(-abs(tstat_coef), self._dgf)

        if self.fit_intercept:
            tstat_intercept = self.intercept / self.se_intercept
            self.pvalue_intercept = 2 * t.cdf(-abs(tstat_intercept), self._dgf)
        else:
            self.pvalue_intercept = None 
開發者ID:OpenMined,項目名稱:PySyft,代碼行數:14,代碼來源:lr.py

示例11: _gaussian

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def _gaussian(M, Rho):
    """
    Generates samples from the Gaussian Copula, w/ dependency
    matrix described by Rho.  Rho should be a numpy square matrix.
    It is assumed that we have a 0 mean.
    """
    N = Rho.shape[0]
    mu = np.zeros(N)
    y = multivariate_normal(mu,Rho)
    mvnData = y.rvs(size=M)
    U = norm.cdf(mvnData)
    
    return U 
開發者ID:stochasticresearch,項目名稱:copula-py,代碼行數:15,代碼來源:copularnd.py

示例12: _t

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def _t(M, Rho, nu):
    N = Rho.shape[0]
    mu = np.zeros(N)        # zero mean
    x = mvt.multivariate_t_rvs(mu,Rho,nu,M) # generate T RV's
    U = t.cdf(x, nu)
    
    return U

# We generate the Archimedean Copula's as follows:
# Random pairs from these copulae can be generated sequentially: first
# generate u1 as a uniform r.v.  Then generate u2 from the conditional
# distribution F(u2 | u1; alpha) by generating uniform random values, then
# inverting the conditional CDF.
# This method is outlined in Nelsen's Introduction to Copula's 
開發者ID:stochasticresearch,項目名稱:copula-py,代碼行數:16,代碼來源:copularnd.py

示例13: dependent_corr

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def dependent_corr(xy, xz, yz, n, twotailed=True, conf_level=0.95, method='steiger'):
    """
    Calculates the statistic significance between two dependent correlation coefficients
    @param xy: correlation coefficient between x and y
    @param xz: correlation coefficient between x and z
    @param yz: correlation coefficient between y and z
    @param n: number of elements in x, y and z
    @param twotailed: whether to calculate a one or two tailed test, only works for 'steiger' method
    @param conf_level: confidence level, only works for 'zou' method
    @param method: defines the method uses, 'steiger' or 'zou'
    @return: t and p-val
    """
    if method == 'steiger':
        d = xy - xz
        determin = 1 - xy * xy - xz * xz - yz * yz + 2 * xy * xz * yz
        av = (xy + xz)/2
        cube = (1 - yz) * (1 - yz) * (1 - yz)

        t2 = d * np.sqrt((n - 1) * (1 + yz)/(((2 * (n - 1)/(n - 3)) * determin + av * av * cube)))
        p = 1 - t.cdf(abs(t2), n - 2)

        if twotailed:
            p *= 2

        return t2, p
    elif method == 'zou':
        L1 = rz_ci(xy, n, conf_level=conf_level)[0]
        U1 = rz_ci(xy, n, conf_level=conf_level)[1]
        L2 = rz_ci(xz, n, conf_level=conf_level)[0]
        U2 = rz_ci(xz, n, conf_level=conf_level)[1]
        rho_r12_r13 = rho_rxy_rxz(xy, xz, yz)
        lower = xy - xz - pow((pow((xy - L1), 2) + pow((U2 - xz), 2) - 2 * rho_r12_r13 * (xy - L1) * (U2 - xz)), 0.5)
        upper = xy - xz + pow((pow((U1 - xy), 2) + pow((xz - L2), 2) - 2 * rho_r12_r13 * (U1 - xy) * (xz - L2)), 0.5)
        return lower, upper
    else:
        raise Exception('Wrong method!') 
開發者ID:MicrosoftResearch,項目名稱:Azimuth,代碼行數:38,代碼來源:corrstats.py

示例14: asrfModel

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def asrfModel(myP,rho,c,alpha):
    myX = np.linspace(0.0001,0.9999,100)
    num = np.sqrt(1-rho)*norm.ppf(myX)-norm.ppf(myP)
    cdf = norm.cdf(num/np.sqrt(rho))
    pdf = util.asrfDensity(myX,myP,rho)
    varAnalytic = np.sum(c)*np.interp(alpha,cdf,myX)
    esAnalytic = asrfExpectedShortfall(alpha,myX,cdf,pdf,c,rho,myP)
    return pdf,cdf,varAnalytic,esAnalytic 
開發者ID:djbolder,項目名稱:credit-risk-modelling,代碼行數:10,代碼來源:thresholdModels.py

示例15: asrfExpectedShortfall

# 需要導入模塊: from scipy.stats import t [as 別名]
# 或者: from scipy.stats.t import cdf [as 別名]
def asrfExpectedShortfall(alpha,myX,cdf,pdf,c,rho,myP):
    expectedShortfall = np.zeros(len(alpha))
    for n in range(0,len(alpha)):   
        myAlpha = np.linspace(alpha[n],1,1000)
        loss = np.sum(c)*np.interp(myAlpha,cdf,myX)
        prob = np.interp(loss,myX,pdf)
        expectedShortfall[n] = np.dot(loss,prob)/np.sum(prob)
    return expectedShortfall 
開發者ID:djbolder,項目名稱:credit-risk-modelling,代碼行數:10,代碼來源:thresholdModels.py


注:本文中的scipy.stats.t.cdf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。