當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.skew方法代碼示例

本文整理匯總了Python中scipy.stats.skew方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.skew方法的具體用法?Python stats.skew怎麽用?Python stats.skew使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.skew方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: doanes_rule

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def doanes_rule(x):
    """Convenience function for choosing an optimal number of bins using Doane's Rule.

    Parameters
    ----------
    x : numpy.ndarray or list of floats
        Data to be binned.

    Returns
    -------
    n_bins : int
    """
    if not isinstance(x, ndarray):
        x = array(x)

    n = x.shape[0]
    g1 = atleast_1d(skew(x))
    sg1 = sqrt(6 * (n - 2) / ((n + 1) * (n + 3)))

    return min(floor(1 + log2(n) + log2(1 + abs(g1)/sg1))) 
開發者ID:msmbuilder,項目名稱:mdentropy,代碼行數:22,代碼來源:binning.py

示例2: test_rolling_skew_edge_cases

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def test_rolling_skew_edge_cases(self):

        all_nan = Series([np.NaN] * 5)

        # yields all NaN (0 variance)
        d = Series([1] * 5)
        x = d.rolling(window=5).skew()
        tm.assert_series_equal(all_nan, x)

        # yields all NaN (window too small)
        d = Series(np.random.randn(5))
        x = d.rolling(window=2).skew()
        tm.assert_series_equal(all_nan, x)

        # yields [NaN, NaN, NaN, 0.177994, 1.548824]
        d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401
                    ])
        expected = Series([np.NaN, np.NaN, np.NaN, 0.177994, 1.548824])
        x = d.rolling(window=4).skew()
        tm.assert_series_equal(expected, x) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_window.py

示例3: test_rolling

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def test_rolling(self):
        g = self.frame.groupby('A')
        r = g.rolling(window=4)

        for f in ['sum', 'mean', 'min', 'max', 'count', 'kurt', 'skew']:

            result = getattr(r, f)()
            expected = g.apply(lambda x: getattr(x.rolling(4), f)())
            tm.assert_frame_equal(result, expected)

        for f in ['std', 'var']:
            result = getattr(r, f)(ddof=1)
            expected = g.apply(lambda x: getattr(x.rolling(4), f)(ddof=1))
            tm.assert_frame_equal(result, expected)

        result = r.quantile(0.5)
        expected = g.apply(lambda x: x.rolling(4).quantile(0.5))
        tm.assert_frame_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_window.py

示例4: test_expanding

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def test_expanding(self):
        g = self.frame.groupby('A')
        r = g.expanding()

        for f in ['sum', 'mean', 'min', 'max', 'count', 'kurt', 'skew']:

            result = getattr(r, f)()
            expected = g.apply(lambda x: getattr(x.expanding(), f)())
            tm.assert_frame_equal(result, expected)

        for f in ['std', 'var']:
            result = getattr(r, f)(ddof=0)
            expected = g.apply(lambda x: getattr(x.expanding(), f)(ddof=0))
            tm.assert_frame_equal(result, expected)

        result = r.quantile(0.5)
        expected = g.apply(lambda x: x.expanding().quantile(0.5))
        tm.assert_frame_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_window.py

示例5: test_all

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def test_all(self):

        # simple comparison of integer vs time-based windowing
        df = self.regular * 2
        er = df.rolling(window=1)
        r = df.rolling(window='1s')

        for f in ['sum', 'mean', 'count', 'median', 'std',
                  'var', 'kurt', 'skew', 'min', 'max']:

            result = getattr(r, f)()
            expected = getattr(er, f)()
            tm.assert_frame_equal(result, expected)

        result = r.quantile(0.5)
        expected = er.quantile(0.5)
        tm.assert_frame_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_window.py

示例6: test_returned_dtype

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def test_returned_dtype(self):

        dtypes = [np.int16, np.int32, np.int64, np.float32, np.float64]
        if hasattr(np, 'float128'):
            dtypes.append(np.float128)

        for dtype in dtypes:
            s = Series(range(10), dtype=dtype)
            group_a = ['mean', 'std', 'var', 'skew', 'kurt']
            group_b = ['min', 'max']
            for method in group_a + group_b:
                result = getattr(s, method)()
                if is_integer_dtype(dtype) and method in group_a:
                    assert result.dtype == np.float64
                else:
                    assert result.dtype == dtype 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_nanops.py

示例7: test_skew

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def test_skew(self):
        from scipy.stats import skew

        string_series = tm.makeStringSeries().rename('series')

        alt = lambda x: skew(x, bias=False)
        self._check_stat_op('skew', alt, string_series)

        # test corner cases, skew() returns NaN unless there's at least 3
        # values
        min_N = 3
        for i in range(1, min_N + 1):
            s = Series(np.ones(i))
            df = DataFrame(np.ones((i, i)))
            if i < min_N:
                assert np.isnan(s.skew())
                assert np.isnan(df.skew()).all()
            else:
                assert 0 == s.skew()
                assert (df.skew() == 0).all() 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_stat_reductions.py

示例8: columns

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def columns():
    feature_sizes = dict(chroma_stft=12, chroma_cqt=12, chroma_cens=12,
                         tonnetz=6, mfcc=20, rmse=1, zcr=1,
                         spectral_centroid=1, spectral_bandwidth=1,
                         spectral_contrast=7, spectral_rolloff=1)
    moments = ('mean', 'std', 'skew', 'kurtosis', 'median', 'min', 'max')

    columns = []
    for name, size in feature_sizes.items():
        for moment in moments:
            it = ((name, moment, '{:02d}'.format(i+1)) for i in range(size))
            columns.extend(it)

    names = ('feature', 'statistics', 'number')
    columns = pd.MultiIndex.from_tuples(columns, names=names)

    # More efficient to slice if indexes are sorted.
    return columns.sort_values() 
開發者ID:crowdAI,項目名稱:crowdai-musical-genre-recognition-starter-kit,代碼行數:20,代碼來源:features.py

示例9: test_skew

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def test_skew(self):
        from scipy.stats import skew
        alt = lambda x: skew(x, bias=False)
        self._check_stat_op('skew', alt)

        # test corner cases, skew() returns NaN unless there's at least 3
        # values
        min_N = 3
        for i in range(1, min_N + 1):
            s = Series(np.ones(i))
            df = DataFrame(np.ones((i, i)))
            if i < min_N:
                assert np.isnan(s.skew())
                assert np.isnan(df.skew()).all()
            else:
                assert 0 == s.skew()
                assert (df.skew() == 0).all() 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:test_analytics.py

示例10: get_stat_funs

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def get_stat_funs():
    """
    Previous version uses lambdas.
    """
    stat_funs = []
    
    stats = [len, np.min, np.max, np.median, np.std, skew, kurtosis] + 19 * [np.percentile]
    stats_kwargs = [{} for i in range(7)] + [{'q': i} for i in np.linspace(0.05, 0.95, 19)]

    for stat, stat_kwargs in zip(stats, stats_kwargs):
        stat_funs.append(_StatFunAdaptor(stat,**stat_kwargs))
        stat_funs.append(_StatFunAdaptor(stat, np.diff, **stat_kwargs))
        stat_funs.append(_StatFunAdaptor(stat, diff2, **stat_kwargs))
        stat_funs.append(_StatFunAdaptor(stat, np.unique, **stat_kwargs))
        stat_funs.append(_StatFunAdaptor(stat, np.unique, np.diff, **stat_kwargs))
        stat_funs.append(_StatFunAdaptor(stat, np.unique, diff2, **stat_kwargs))
    return stat_funs 
開發者ID:mengli,項目名稱:MachineLearning,代碼行數:19,代碼來源:pipline.py

示例11: plot_information_table

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def plot_information_table(ic_data):
    """
    IC 統計量
    """
    ic_summary_table = pd.DataFrame()
    ic_summary_table["IC Mean"] = ic_data.mean()
    ic_summary_table["IC std."] = ic_data.std()
    ic_summary_table["Risk-Adjusted IC (IR)"] = ic_data.mean() / ic_data.std()
    t_stat, p_value = stats.ttest_1samp(ic_data, 0)
    ic_summary_table["t-stat (IC)"] = t_stat
    ic_summary_table["p-value (IC)"] = p_value
    ic_summary_table["IC Skew"] = stats.skew(ic_data)
    ic_summary_table["IC Kurtosis"] = stats.kurtosis(ic_data)

    print("Information Analysis")
    plotting_utils.print_table(ic_summary_table.apply(lambda x: x.round(3)).T) 
開發者ID:QUANTAXIS,項目名稱:QUANTAXIS,代碼行數:18,代碼來源:plotting.py

示例12: compute_skewness

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def compute_skewness(data):
    """Skewness of the data (per channel).

    Parameters
    ----------
    data : ndarray, shape (n_channels, n_times)

    Returns
    -------
    output : ndarray, shape (n_channels,)

    Notes
    -----
    Alias of the feature function: **skewness**
    """
    ndim = data.ndim
    return stats.skew(data, axis=ndim - 1) 
開發者ID:mne-tools,項目名稱:mne-features,代碼行數:19,代碼來源:univariate.py

示例13: test_skewness

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def test_skewness(self):
        # Scalar test case
        y = stats.skew(self.scalar_testcase)
        assert_approx_equal(y, 0.0)
        # sum((testmathworks-mean(testmathworks,axis=0))**3,axis=0) /
        #     ((sqrt(var(testmathworks)*4/5))**3)/5
        y = stats.skew(self.testmathworks)
        assert_approx_equal(y, -0.29322304336607, 10)
        y = stats.skew(self.testmathworks, bias=0)
        assert_approx_equal(y, -0.437111105023940, 10)
        y = stats.skew(self.testcase)
        assert_approx_equal(y, 0.0, 10)

        x = np.arange(10.)
        x[9] = np.nan
        with np.errstate(invalid='ignore'):
            assert_equal(stats.skew(x), np.nan)
        assert_equal(stats.skew(x, nan_policy='omit'), 0.)
        assert_raises(ValueError, stats.skew, x, nan_policy='raise')
        assert_raises(ValueError, stats.skew, x, nan_policy='foobar') 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_stats.py

示例14: test_cdf_sf_small_values

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def test_cdf_sf_small_values(self):
        # Triples are [x, a, cdf(x, a)].  These values were computed
        # using CDF[SkewNormDistribution[0, 1, a], x] in Wolfram Alpha.
        cdfvals = [
            [-8, 1, 3.870035046664392611e-31],
            [-4, 2, 8.1298399188811398e-21],
            [-2, 5, 1.55326826787106273e-26],
            [-9, -1, 2.257176811907681295e-19],
            [-10, -4, 1.523970604832105213e-23],
        ]
        for x, a, cdfval in cdfvals:
            p = stats.skewnorm.cdf(x, a)
            assert_allclose(p, cdfval, rtol=1e-8)
            # For the skew normal distribution, sf(-x, -a) = cdf(x, a).
            p = stats.skewnorm.sf(-x, -a)
            assert_allclose(p, cdfval, rtol=1e-8) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:test_distributions.py

示例15: extract_bag_of_characters_features

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import skew [as 別名]
def extract_bag_of_characters_features(data, n_val):
    
    characters_to_check = [ '['+  c + ']' for c in string.printable if c not in ( '\n', '\\', '\v', '\r', '\t', '^' )] + ['[\\\\]', '[\^]']
    
    f = OrderedDict()

    f['n_values'] = n_val
    data_no_null = data.dropna()
    all_value_features = OrderedDict()

    all_value_features['length'] = data_no_null.apply(len)

    for c in characters_to_check:
        all_value_features['n_{}'.format(c)] = data_no_null.str.count(c)
        
    for value_feature_name, value_features in all_value_features.items():
        f['{}-agg-any'.format(value_feature_name)] = any(value_features)
        f['{}-agg-all'.format(value_feature_name)] = all(value_features)
        f['{}-agg-mean'.format(value_feature_name)] = np.mean(value_features)
        f['{}-agg-var'.format(value_feature_name)] = np.var(value_features)
        f['{}-agg-min'.format(value_feature_name)] = np.min(value_features)
        f['{}-agg-max'.format(value_feature_name)] = np.max(value_features)
        f['{}-agg-median'.format(value_feature_name)] = np.median(value_features)
        f['{}-agg-sum'.format(value_feature_name)] = np.sum(value_features)
        f['{}-agg-kurtosis'.format(value_feature_name)] = kurtosis(value_features)
        f['{}-agg-skewness'.format(value_feature_name)] = skew(value_features)

    n_none = data.size - data_no_null.size - len([ e for e in data if e == ''])
    f['none-agg-has'] = n_none > 0
    f['none-agg-percent'] = n_none / len(data)
    f['none-agg-num'] = n_none
    f['none-agg-all'] = (n_none == len(data))
    #print(len(f))
    return f 
開發者ID:megagonlabs,項目名稱:sato,代碼行數:36,代碼來源:bag_of_characters.py


注:本文中的scipy.stats.skew方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。