當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.shapiro方法代碼示例

本文整理匯總了Python中scipy.stats.shapiro方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.shapiro方法的具體用法?Python stats.shapiro怎麽用?Python stats.shapiro使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.shapiro方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_shapiro

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_shapiro():
    #tests against R fBasics
    #testing scipy.stats
    from scipy.stats import shapiro

    st_pv_R = np.array([0.939984787255526, 0.239621898000460])
    sh = shapiro(x)
    assert_almost_equal(sh, st_pv_R, 4)

    #st is ok -7.15e-06, pval agrees at -3.05e-10
    st_pv_R = np.array([5.799574255943298e-01, 1.838456834681376e-06 * 1e4])
    sh = shapiro(x**2) * np.array([1, 1e4])
    assert_almost_equal(sh, st_pv_R, 5)

    st_pv_R = np.array([0.91730442643165588, 0.08793704167882448])
    sh = shapiro(np.log(x**2))
    assert_almost_equal(sh, st_pv_R, 5)

    #diff is [  9.38773155e-07,   5.48221246e-08]
    st_pv_R = np.array([0.818361863493919373, 0.001644620895206969])
    sh = shapiro(np.exp(-x**2))
    assert_almost_equal(sh, st_pv_R, 5) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:test_statstools.py

示例2: normality_test

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def normality_test(self):
        _, series_values, _ = self.load_dataset()
        results = stats.shapiro(series_values)
        if results[1] > 0.05:
            self.normality = 1
        else:
            self.normality = 0
        # write results to a file
        # with open(os.path.join(self.root_path, 'normality.txt'), 'a') as f:
        #     f.write('sensor name: ' + str(self.sensor_name + '-' + self.sample_rate) + ' ,normality: ' + str(self.normality) + '\n')
        # save histogram image
        # fig = pyplot.figure()
        # pyplot.hist(series_values)
        # pyplot.title(self.file_name, fontsize=20)
        # pyplot.xlabel('Value', fontsize=16)
        # pyplot.ylabel('Frequency', fontsize=16)
        # fig.savefig(os.path.join(self.root_path, 'distribution_test', self.file_name + '.png'), bbox_inches='tight', dpi=150) 
開發者ID:limingwu8,項目名稱:Predictive-Maintenance,代碼行數:19,代碼來源:Sensor.py

示例3: test_normality_increase_lambert

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_normality_increase_lambert(self):
        # Generate random data and check that it is more normal after inference
        for i, y in enumerate([np.random.standard_cauchy(size=ns), experimental_data]):
            print('Distribution %d' % i)
            print('Before')
            print(('anderson: %0.3f\tshapiro: %0.3f' % (anderson(y)[0], shapiro(y)[0])).expandtabs(30))
            stats.probplot(y, dist="norm", plot=plt)
            plt.savefig(os.path.join(self.test_dir, '%d_before.png' % i))
            plt.clf()
    
            tau = g.igmm(y)
            x = g.w_t(y, tau)
            print('After')
            print(('anderson: %0.3f\tshapiro: %0.3f' % (anderson(x)[0], shapiro(x)[0])).expandtabs(30))
            stats.probplot(x, dist="norm", plot=plt)
            plt.savefig(os.path.join(self.test_dir, '%d_after.png' % i))
            plt.clf() 
開發者ID:gregversteeg,項目名稱:gaussianize,代碼行數:19,代碼來源:test_gaussianize.py

示例4: test

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test(self, alpha, x):
        """
        Tests whether alpha and x are significantly correlated.
        The test assumes that x is normally distributed. The test
        function uses a Shapiro-Wilk test to test this assumption.

        :param alpha: independent variable, angles in radians
        :param x: dependent variable
        :return: test results of Shapiro-Wilk and Liddell-Ord test
        :rtype: pandas.DataFrame

        References: [Jammalamadaka2001]_
        """
        w, psw = stats.shapiro(x)
        if psw < 0.05:
            warnings.warn("This test requires Gaussian distributed x")

        rxc, rxs, rcs = np.corrcoef(x, np.cos(alpha))[0,1], np.corrcoef(x, np.sin(alpha))[0,1], \
                        np.corrcoef(np.cos(alpha), np.sin(alpha))[0,1]
        n = len(alpha)
        r2 = (rxc**2 + rxs**2 - 2*rxc*rxs*rcs)/(1 - rcs**2)
        f = (n-3)*r2/(1-r2)
        p = stats.f.sf(f, 2, n-3)

        df = pd.DataFrame(dict(
            test = ['Shapiro-Wilk','Liddell-Ord'],
            statistics = [w, f],
            p = [psw, p],
            dof = [None, (2, n-3)]
        )).set_index('test')
        return df 
開發者ID:circstat,項目名稱:pycircstat,代碼行數:33,代碼來源:regression.py

示例5: test_basic

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_basic(self):
        x1 = [0.11,7.87,4.61,10.14,7.95,3.14,0.46,
              4.43,0.21,4.75,0.71,1.52,3.24,
              0.93,0.42,4.97,9.53,4.55,0.47,6.66]
        w,pw = stats.shapiro(x1)
        assert_almost_equal(w,0.90047299861907959,6)
        assert_almost_equal(pw,0.042089745402336121,6)
        x2 = [1.36,1.14,2.92,2.55,1.46,1.06,5.27,-1.11,
              3.48,1.10,0.88,-0.51,1.46,0.52,6.20,1.69,
              0.08,3.67,2.81,3.49]
        w,pw = stats.shapiro(x2)
        assert_almost_equal(w,0.9590270,6)
        assert_almost_equal(pw,0.52460,3) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:15,代碼來源:test_morestats.py

示例6: test_bad_arg

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_bad_arg(self):
        # Length of x is less than 3.
        x = [1]
        assert_raises(ValueError, stats.shapiro, x) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:6,代碼來源:test_morestats.py

示例7: test_basic

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_basic(self):
        x1 = [0.11, 7.87, 4.61, 10.14, 7.95, 3.14, 0.46,
              4.43, 0.21, 4.75, 0.71, 1.52, 3.24,
              0.93, 0.42, 4.97, 9.53, 4.55, 0.47, 6.66]
        w, pw = stats.shapiro(x1)
        assert_almost_equal(w, 0.90047299861907959, 6)
        assert_almost_equal(pw, 0.042089745402336121, 6)
        x2 = [1.36, 1.14, 2.92, 2.55, 1.46, 1.06, 5.27, -1.11,
              3.48, 1.10, 0.88, -0.51, 1.46, 0.52, 6.20, 1.69,
              0.08, 3.67, 2.81, 3.49]
        w, pw = stats.shapiro(x2)
        assert_almost_equal(w, 0.9590270, 6)
        assert_almost_equal(pw, 0.52460, 3)

        # Verified against R
        np.random.seed(12345678)
        x3 = stats.norm.rvs(loc=5, scale=3, size=100)
        w, pw = stats.shapiro(x3)
        assert_almost_equal(w, 0.9772805571556091, decimal=6)
        assert_almost_equal(pw, 0.08144091814756393, decimal=3)

        # Extracted from original paper
        x4 = [0.139, 0.157, 0.175, 0.256, 0.344, 0.413, 0.503, 0.577, 0.614,
              0.655, 0.954, 1.392, 1.557, 1.648, 1.690, 1.994, 2.174, 2.206,
              3.245, 3.510, 3.571, 4.354, 4.980, 6.084, 8.351]
        W_expected = 0.83467
        p_expected = 0.000914
        w, pw = stats.shapiro(x4)
        assert_almost_equal(w, W_expected, decimal=4)
        assert_almost_equal(pw, p_expected, decimal=5) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:32,代碼來源:test_morestats.py

示例8: test_2d

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_2d(self):
        x1 = [[0.11, 7.87, 4.61, 10.14, 7.95, 3.14, 0.46,
              4.43, 0.21, 4.75], [0.71, 1.52, 3.24,
              0.93, 0.42, 4.97, 9.53, 4.55, 0.47, 6.66]]
        w, pw = stats.shapiro(x1)
        assert_almost_equal(w, 0.90047299861907959, 6)
        assert_almost_equal(pw, 0.042089745402336121, 6)
        x2 = [[1.36, 1.14, 2.92, 2.55, 1.46, 1.06, 5.27, -1.11,
              3.48, 1.10], [0.88, -0.51, 1.46, 0.52, 6.20, 1.69,
              0.08, 3.67, 2.81, 3.49]]
        w, pw = stats.shapiro(x2)
        assert_almost_equal(w, 0.9590270, 6)
        assert_almost_equal(pw, 0.52460, 3) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:15,代碼來源:test_morestats.py

示例9: test_empty_input

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_empty_input(self):
        assert_raises(ValueError, stats.shapiro, [])
        assert_raises(ValueError, stats.shapiro, [[], [], []]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:5,代碼來源:test_morestats.py

示例10: test_not_enough_values

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_not_enough_values(self):
        assert_raises(ValueError, stats.shapiro, [1, 2])
        assert_raises(ValueError, stats.shapiro, [[], [2]]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:5,代碼來源:test_morestats.py

示例11: normal_Shapiro_Wilk

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def normal_Shapiro_Wilk(sample):
    """Compute a Shapiro-Wilk test on the sample versus a normal distribution with mu = 0, sigma = 1

            :param array_like sample: the sample you want to check the "Gaussianity"
            :returns: the Shapiro-Wilk statistic and its related p_value
            :rtype: float, float
    """

    SW_stat, SW_pvalue = ss.shapiro(sample)

    # the null hypothesis can not be rejected ( i.e the distribution of sample come from a Gaussian) if SW_stat -> 1
    # the null hypothesis can not be rejected ( i.e the distribution of sample come from a Gaussian) if SW_pvalue -> 1

    # Judegement made on the STATISTIC because 'W test statistic is accurate but the p-value may not be" (see scipy doc)
    SW_judgement = 0

    if SW_pvalue > 0.01:
        SW_judgement = 1

    if SW_pvalue > 0.05:
        SW_judgement = 2


    return  SW_stat, SW_pvalue, SW_judgement


### Statistics fit quality metrics 
開發者ID:ebachelet,項目名稱:pyLIMA,代碼行數:29,代碼來源:microlstats.py

示例12: sw_single_node

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def sw_single_node(x):
	w,p = stats.shapiro(x)
	return w,p 
開發者ID:0todd0000,項目名稱:spm1d,代碼行數:5,代碼來源:sw.py

示例13: test_NormalQMCEngineShapiro

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_NormalQMCEngineShapiro(self):
        engine = NormalQMCEngine(d=2, seed=12345)
        samples = engine.draw(n=250)
        self.assertEqual(samples.dtype, torch.float)
        self.assertTrue(torch.all(torch.abs(samples.mean(dim=0)) < 1e-2))
        self.assertTrue(torch.all(torch.abs(samples.std(dim=0) - 1) < 1e-2))
        # perform Shapiro-Wilk test for normality
        for i in (0, 1):
            _, pval = shapiro(samples[:, i])
            self.assertGreater(pval, 0.9)
        # make sure samples are uncorrelated
        cov = np.cov(samples.numpy().transpose())
        self.assertLess(np.abs(cov[0, 1]), 1e-2) 
開發者ID:pytorch,項目名稱:botorch,代碼行數:15,代碼來源:test_qmc.py

示例14: test_NormalQMCEngineShapiroInvTransform

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_NormalQMCEngineShapiroInvTransform(self):
        engine = NormalQMCEngine(d=2, seed=12345, inv_transform=True)
        samples = engine.draw(n=250)
        self.assertEqual(samples.dtype, torch.float)
        self.assertTrue(torch.all(torch.abs(samples.mean(dim=0)) < 1e-2))
        self.assertTrue(torch.all(torch.abs(samples.std(dim=0) - 1) < 1e-2))
        # perform Shapiro-Wilk test for normality
        for i in (0, 1):
            _, pval = shapiro(samples[:, i])
            self.assertGreater(pval, 0.9)
        # make sure samples are uncorrelated
        cov = np.cov(samples.numpy().transpose())
        self.assertLess(np.abs(cov[0, 1]), 1e-2) 
開發者ID:pytorch,項目名稱:botorch,代碼行數:15,代碼來源:test_qmc.py

示例15: test_MultivariateNormalQMCEngineShapiro

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import shapiro [as 別名]
def test_MultivariateNormalQMCEngineShapiro(self):
        for dtype in (torch.float, torch.double):
            # test the standard case
            mean = torch.zeros(2, device=self.device, dtype=dtype)
            cov = torch.eye(2, device=self.device, dtype=dtype)
            engine = MultivariateNormalQMCEngine(mean=mean, cov=cov, seed=12345)
            samples = engine.draw(n=250)
            self.assertEqual(samples.dtype, dtype)
            self.assertEqual(samples.device.type, self.device.type)
            self.assertTrue(torch.all(torch.abs(samples.mean(dim=0)) < 1e-2))
            self.assertTrue(torch.all(torch.abs(samples.std(dim=0) - 1) < 1e-2))
            # perform Shapiro-Wilk test for normality
            samples = samples.cpu().numpy()
            for i in (0, 1):
                _, pval = shapiro(samples[:, i])
                self.assertGreater(pval, 0.9)
            # make sure samples are uncorrelated
            cov = np.cov(samples.transpose())
            self.assertLess(np.abs(cov[0, 1]), 1e-2)

            # test the correlated, non-zero mean case
            mean = torch.tensor([1.0, 2.0], device=self.device, dtype=dtype)
            cov = torch.tensor(
                [[1.5, 0.5], [0.5, 1.5]], device=self.device, dtype=dtype
            )
            engine = MultivariateNormalQMCEngine(mean=mean, cov=cov, seed=12345)
            samples = engine.draw(n=250)
            self.assertEqual(samples.dtype, dtype)
            self.assertEqual(samples.device.type, self.device.type)
            self.assertTrue(torch.all(torch.abs(samples.mean(dim=0) - mean) < 1e-2))
            self.assertTrue(
                torch.all(torch.abs(samples.std(dim=0) - math.sqrt(1.5)) < 1e-2)
            )
            # perform Shapiro-Wilk test for normality
            samples = samples.cpu().numpy()
            for i in (0, 1):
                _, pval = shapiro(samples[:, i])
                self.assertGreater(pval, 0.9)
            # check covariance
            cov = np.cov(samples.transpose())
            self.assertLess(np.abs(cov[0, 1] - 0.5), 1e-2) 
開發者ID:pytorch,項目名稱:botorch,代碼行數:43,代碼來源:test_qmc.py


注:本文中的scipy.stats.shapiro方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。