當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.sem方法代碼示例

本文整理匯總了Python中scipy.stats.sem方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.sem方法的具體用法?Python stats.sem怎麽用?Python stats.sem使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.sem方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_sem

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def test_sem(self):
        # example from stats.sem doc
        a = np.arange(20).reshape(5,4)
        am = np.ma.array(a)
        r = stats.sem(a,ddof=1)
        rm = stats.mstats.sem(am, ddof=1)

        assert_allclose(r, 2.82842712, atol=1e-5)
        assert_allclose(rm, 2.82842712, atol=1e-5)

        for n in self.get_n():
            x, y, xm, ym = self.generate_xy_sample(n)
            assert_almost_equal(stats.mstats.sem(xm, axis=None, ddof=0),
                                stats.sem(x, axis=None, ddof=0), decimal=13)
            assert_almost_equal(stats.mstats.sem(ym, axis=None, ddof=0),
                                stats.sem(y, axis=None, ddof=0), decimal=13)
            assert_almost_equal(stats.mstats.sem(xm, axis=None, ddof=1),
                                stats.sem(x, axis=None, ddof=1), decimal=13)
            assert_almost_equal(stats.mstats.sem(ym, axis=None, ddof=1),
                                stats.sem(y, axis=None, ddof=1), decimal=13) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_mstats_basic.py

示例2: optimally_reblocked

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def optimally_reblocked(data):
    """
        Find optimal reblocking of input data. Takes in pandas
        DataFrame of raw data to reblock, returns DataFrame
        of reblocked data.
    """
    opt = opt_block(data)
    n_reblock = int(np.amax(opt))
    rb_data = reblock_by2(data, n_reblock)
    serr = rb_data.sem(axis=0)
    d = {
        "mean": rb_data.mean(axis=0),
        "standard error": serr,
        "standard error error": serr / np.sqrt(2 * (len(rb_data) - 1)),
        "reblocks": n_reblock,
    }
    return pd.DataFrame(d) 
開發者ID:WagnerGroup,項目名稱:pyqmc,代碼行數:19,代碼來源:reblock.py

示例3: test_sem

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def test_sem(self):
        # This is not in R, so used:
        #     sqrt(var(testcase)*3/4)/sqrt(3)

        # y = stats.sem(self.shoes[0])
        # assert_approx_equal(y,0.775177399)
        with suppress_warnings() as sup, np.errstate(invalid="ignore"):
            sup.filter(RuntimeWarning, "Degrees of freedom <= 0 for slice")
            y = stats.sem(self.scalar_testcase)
        assert_(np.isnan(y))

        y = stats.sem(self.testcase)
        assert_approx_equal(y, 0.6454972244)
        n = len(self.testcase)
        assert_allclose(stats.sem(self.testcase, ddof=0) * np.sqrt(n/(n-2)),
                        stats.sem(self.testcase, ddof=2))

        x = np.arange(10.)
        x[9] = np.nan
        assert_equal(stats.sem(x), np.nan)
        assert_equal(stats.sem(x, nan_policy='omit'), 0.9128709291752769)
        assert_raises(ValueError, stats.sem, x, nan_policy='raise')
        assert_raises(ValueError, stats.sem, x, nan_policy='foobar') 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_stats.py

示例4: mean_confidence_interval

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def mean_confidence_interval(data, confidence=0.95):
    a = 1.0*np.array(data)
    n = len(a)
    m = np.mean(a)
    se = stats.sem(a)
    h = se * stats.t._ppf((1+confidence)/2., n-1)
    return m,h 
開發者ID:Yuxin-CV,項目名稱:DTN,代碼行數:9,代碼來源:main_DTN.py

示例5: evaluate_cross_validation

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def evaluate_cross_validation(clf, X, y, K):
    # create a k-fold cross validation iterator
    cv = KFold(len(y), K, shuffle=True, random_state=0)
    # by default the score used is the one returned by score method of the estimator (accuracy)
    scores = cross_val_score(clf, X, y, cv=cv)
    print "Scores: ", (scores)
    print ("Mean score: {0:.3f} (+/-{1:.3f})".format(np.mean(scores), sem(scores)))


# Confusion Matrix and Results 
開發者ID:its-izhar,項目名稱:Emotion-Recognition-Using-SVMs,代碼行數:12,代碼來源:Train Classifier and Test Video Feed.py

示例6: reblock_summary

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def reblock_summary(df, nblocks):
    df = reblock(df, nblocks)
    serr = df.sem()
    d = {
        "mean": df.mean(axis=0),
        "standard error": serr,
        "standard error error": serr / np.sqrt(2 * (len(df) - 1)),
        "n_blocks": nblocks,
    }
    return pd.DataFrame(d) 
開發者ID:WagnerGroup,項目名稱:pyqmc,代碼行數:12,代碼來源:reblock.py

示例7: opt_block

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def opt_block(df):
    """
    Finds optimal block size for each variable in a dataset
    df is a dataframe where each row is a sample and each column is a calculated quantity
    reblock each column over samples to find the best block size
    Returns optimal_block, a 1D array with the optimal size for each column in df
    """
    newdf = df.copy()
    iblock = 0
    ndata, nvariables = tuple(df.shape[:2])
    optimal_block = np.array([float("NaN")] * nvariables)
    serr0 = df.sem(axis=0).values
    statslist = []
    while newdf.shape[0] > 1:
        serr = newdf.sem(axis=0).values
        serrerr = serr / (2 * (newdf.shape[0] - 1)) ** 0.5
        statslist.append((iblock, serr.copy()))

        n = newdf.shape[0]
        lasteven = n - int(n % 2 == 1)
        newdf = (newdf[:lasteven:2] + newdf[1::2].values) / 2
        iblock += 1
    for iblock, serr in reversed(statslist):
        B3 = 2 ** (3 * iblock)
        inds = np.where(B3 >= 2 * ndata * (serr / serr0) ** 4)[0]
        optimal_block[inds] = iblock

    return optimal_block 
開發者ID:WagnerGroup,項目名稱:pyqmc,代碼行數:30,代碼來源:reblock.py

示例8: test_reblocking

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def test_reblocking():
    """
        Tests reblocking against known distribution.
    """
    from scipy.stats import sem

    def corr_data(N, L):
        """
            Creates correlated data. Taken from 
            https://pyblock.readthedocs.io/en/latest/tutorial.html.
        """
        return np.convolve(np.random.randn(2 ** N), np.ones(2 ** L) / 10, "same")

    n = 11
    cols = ["test_data1", "test_data2"]
    dat1 = corr_data(n, 4)
    dat2 = corr_data(n, 7)
    test_data = pd.DataFrame(data={cols[0]: dat1, cols[1]: dat2})
    reblocked_data = optimally_reblocked(test_data[cols])
    for c in cols:
        row = reblocked_data.loc[c]
        reblocks = reblocked_data["reblocks"].values[0]
        std_err = sem(reblock_by2(test_data, reblocks, c))
        std_err_err = std_err / np.sqrt(2 * (2 ** (n - reblocks) - 1))

        assert np.isclose(
            row["mean"], np.mean(test_data[c]), 1e-10, 1e-12
        ), "Means are not equal"
        assert np.isclose(
            row["standard error"], std_err, 1e-10, 1e-12
        ), "Standard errors are not equal"
        assert np.isclose(
            row["standard error error"], std_err_err, 1e-10, 1e-12
        ), "Standard error errors are not equal"

    statlist = ["mean", "sem", lambda x: x.sem() / np.sqrt(2 * (len(x) - 1))]
    rb1 = reblock(test_data, len(test_data) // 4).agg(statlist).T
    rb2 = reblock_by2(test_data, 2).agg(statlist).T
    for c in rb1.columns:
        assert np.isclose(rb1[c], rb2[c], 1e-10, 1e-12).all(), (c, rb1[c], rb2[c]) 
開發者ID:WagnerGroup,項目名稱:pyqmc,代碼行數:42,代碼來源:reblock.py

示例9: test_nansem

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def test_nansem(self, ddof):
        from scipy.stats import sem
        with np.errstate(invalid='ignore'):
            self.check_funs(nanops.nansem, sem, allow_complex=False,
                            allow_str=False, allow_date=False,
                            allow_tdelta=False, allow_obj='convert', ddof=ddof) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:test_nanops.py

示例10: test_ops_general

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def test_ops_general():
    ops = [('mean', np.mean),
           ('median', np.median),
           ('std', np.std),
           ('var', np.var),
           ('sum', np.sum),
           ('prod', np.prod),
           ('min', np.min),
           ('max', np.max),
           ('first', lambda x: x.iloc[0]),
           ('last', lambda x: x.iloc[-1]),
           ('count', np.size), ]
    try:
        from scipy.stats import sem
    except ImportError:
        pass
    else:
        ops.append(('sem', sem))
    df = DataFrame(np.random.randn(1000))
    labels = np.random.randint(0, 50, size=1000).astype(float)

    for op, targop in ops:
        result = getattr(df.groupby(labels), op)().astype(float)
        expected = df.groupby(labels).agg(targop)
        try:
            tm.assert_frame_equal(result, expected)
        except BaseException as exc:
            exc.args += ('operation: %s' % op, )
            raise 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:31,代碼來源:test_function.py

示例11: test_sem

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def test_sem(self):
        """
        this is not in R, so used
        sqrt(var(testcase)*3/4)/sqrt(3)
        """
        #y = stats.sem(self.shoes[0])
        #assert_approx_equal(y,0.775177399)
        y = mstats.sem(self.testcase)
        assert_almost_equal(y,0.6454972244) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:11,代碼來源:test_mstats_basic.py

示例12: test_sem

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def test_sem(self):
        # This is not in R, so used:
        #     sqrt(var(testcase)*3/4)/sqrt(3)

        # y = stats.sem(self.shoes[0])
        # assert_approx_equal(y,0.775177399)
        y = stats.sem(self.testcase)
        assert_approx_equal(y,0.6454972244) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:10,代碼來源:test_stats.py

示例13: ax_plot_lines

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def ax_plot_lines(ax, xs, ys, colors, shapes, linestyles,
                  errorbar=False, linewidth=LINEWIDTH):
    lines = []
    for (x, y, c, s, l) in zip(xs, ys, colors, shapes, linestyles):
        if errorbar:
            # y should be a list of lists in this case
            mean = [np.mean(yl) for yl in y]
            error = [ss.sem(yl) for yl in y]
            l = ax.errorbar(x, mean, yerr=error, color=c,
                marker=s, linestyle=l, ecolor=c)
        else:
            l, = ax.plot(x, y, color=c, marker=s, linestyle=l, linewidth=linewidth)
        lines.append(l)
    return lines 
開發者ID:Noahs-ARK,項目名稱:idea_relations,代碼行數:16,代碼來源:plot_functions.py

示例14: get_relation_strength

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def get_relation_strength(table_file, top=10, normalize=False,
                          return_sem=False, return_all=False):
    type_list = load_all_pairs(table_file)
    scores = {k: [abs(v.combined_score) for v in type_list[k][:top]]
              for k in type_list}
    mean = {k: np.mean(scores[k]) for k in type_list}
    if return_all:
        return scores, mean, {k: ss.sem(scores[k]) for k in type_list}
    elif return_sem:
        return mean, {k: ss.sem(scores[k]) for k in type_list}
    elif normalize:
        max_v = max(mean.values())
        return {k: mean[k] / max_v for k in mean}
    else:
        return mean 
開發者ID:Noahs-ARK,項目名稱:idea_relations,代碼行數:17,代碼來源:strength_table.py

示例15: get_confidence_interval

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import sem [as 別名]
def get_confidence_interval(class_accuracies, confidence):
    print(st.t.interval(CONFIDENCE_LEVEL, len(class_accuracies)-1,
                        loc=np.mean(class_accuracies),
                        scale=st.sem(class_accuracies))) 
開發者ID:BMIRDS,項目名稱:HistoGAN,代碼行數:6,代碼來源:accuracy_tester.py


注:本文中的scipy.stats.sem方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。