當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.scoreatpercentile方法代碼示例

本文整理匯總了Python中scipy.stats.scoreatpercentile方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.scoreatpercentile方法的具體用法?Python stats.scoreatpercentile怎麽用?Python stats.scoreatpercentile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.scoreatpercentile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: scoreatpercentile

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def scoreatpercentile(a, per, limit=(), interpolation_method='lower'):
    """
    This function is grabbed from scipy

    """
    values = np.sort(a, axis=0)
    if limit:
        values = values[(limit[0] <= values) & (values <= limit[1])]

    idx = per /100. * (values.shape[0] - 1)
    if (idx % 1 == 0):
        score = values[int(idx)]
    else:
        if interpolation_method == 'fraction':
            score = _interpolate(values[int(idx)], values[int(idx) + 1],
                                 idx % 1)
        elif interpolation_method == 'lower':
            score = values[int(np.floor(idx))]
        elif interpolation_method == 'higher':
            score = values[int(np.ceil(idx))]
        else:
            raise ValueError("interpolation_method can only be 'fraction', " \
                             "'lower' or 'higher'")
    return score 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:26,代碼來源:tedana.py

示例2: makeadmask

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def makeadmask(cdat,min=True,getsum=False):

	nx,ny,nz,Ne,nt = cdat.shape

	mask = np.ones((nx,ny,nz),dtype=np.bool)

	if min:
		mask = cdat[:,:,:,:,:].prod(axis=-1).prod(-1)!=0
		return mask
	else:
		#Make a map of longest echo that a voxel can be sampled with,
		#with minimum value of map as X value of voxel that has median
		#value in the 1st echo. N.b. larger factor leads to bias to lower TEs
		emeans = cdat[:,:,:,:,:].mean(-1)
		medv = emeans[:,:,:,0] == stats.scoreatpercentile(emeans[:,:,:,0][emeans[:,:,:,0]!=0],33,interpolation_method='higher')
		lthrs = np.squeeze(np.array([ emeans[:,:,:,ee][medv]/3 for ee in range(Ne) ]))
		if len(lthrs.shape)==1: lthrs = np.atleast_2d(lthrs).T
		lthrs = lthrs[:,lthrs.sum(0).argmax()]
		mthr = np.ones([nx,ny,nz,ne])
		for ee in range(Ne): mthr[:,:,:,ee]*=lthrs[ee]
		mthr = np.abs(emeans[:,:,:,:])>mthr
		masksum = np.array(mthr,dtype=np.int).sum(-1)
		mask = masksum!=0
		if getsum: return mask,masksum
		else: return mask 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:27,代碼來源:tedana.py

示例3: scoreatpercentile

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def scoreatpercentile(a, per, limit=(), interpolation_method='lower'):
    """
    This function is grabbed from scipy

    """
    values = np.sort(a, axis=0)
    if limit:
        values = values[(limit[0] <= values) & (values <= limit[1])]

    idx = per /100. * (values.shape[0] - 1)
    if (idx % 1 == 0):
        score = values[idx]
    else:
        if interpolation_method == 'fraction':
            score = _interpolate(values[int(idx)], values[int(idx) + 1],
                                 idx % 1)
        elif interpolation_method == 'lower':
            score = values[np.floor(idx)]
        elif interpolation_method == 'higher':
            score = values[np.ceil(idx)]
        else:
            raise ValueError("interpolation_method can only be 'fraction', " \
                             "'lower' or 'higher'")
    return score 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:26,代碼來源:t2smap.py

示例4: _select_sigma

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def _select_sigma(X):
    """
    Returns the smaller of std(X, ddof=1) or normalized IQR(X) over axis 0.

    References
    ----------
    Silverman (1986) p.47
    """
#    normalize = norm.ppf(.75) - norm.ppf(.25)
    normalize = 1.349
#    IQR = np.subtract.reduce(percentile(X, [75,25],
#                             axis=axis), axis=axis)/normalize
    IQR = (sap(X, 75) - sap(X, 25))/normalize
    return np.minimum(np.std(X, axis=0, ddof=1), IQR)


## Univariate Rule of Thumb Bandwidths ## 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:bandwidths.py

示例5: test_fraction

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def test_fraction(self):
        scoreatperc = stats.scoreatpercentile

        # Test defaults
        assert_equal(scoreatperc(list(range(10)), 50), 4.5)
        assert_equal(scoreatperc(list(range(10)), 50, (2,7)), 4.5)
        assert_equal(scoreatperc(list(range(100)), 50, limit=(1, 8)), 4.5)
        assert_equal(scoreatperc(np.array([1, 10,100]), 50, (10,100)), 55)
        assert_equal(scoreatperc(np.array([1, 10,100]), 50, (1,10)), 5.5)

        # explicitly specify interpolation_method 'fraction' (the default)
        assert_equal(scoreatperc(list(range(10)), 50, interpolation_method='fraction'),
                     4.5)
        assert_equal(scoreatperc(list(range(10)), 50, limit=(2, 7),
                                 interpolation_method='fraction'),
                     4.5)
        assert_equal(scoreatperc(list(range(100)), 50, limit=(1, 8),
                                 interpolation_method='fraction'),
                     4.5)
        assert_equal(scoreatperc(np.array([1, 10,100]), 50, (10, 100),
                                 interpolation_method='fraction'),
                     55)
        assert_equal(scoreatperc(np.array([1, 10,100]), 50, (1,10),
                                 interpolation_method='fraction'),
                     5.5) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:27,代碼來源:test_stats.py

示例6: test_lower_higher

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def test_lower_higher(self):
        scoreatperc = stats.scoreatpercentile

        # interpolation_method 'lower'/'higher'
        assert_equal(scoreatperc(list(range(10)), 50,
                                 interpolation_method='lower'), 4)
        assert_equal(scoreatperc(list(range(10)), 50,
                                 interpolation_method='higher'), 5)
        assert_equal(scoreatperc(list(range(10)), 50, (2,7),
                                 interpolation_method='lower'), 4)
        assert_equal(scoreatperc(list(range(10)), 50, limit=(2,7),
                                 interpolation_method='higher'), 5)
        assert_equal(scoreatperc(list(range(100)), 50, (1,8),
                                 interpolation_method='lower'), 4)
        assert_equal(scoreatperc(list(range(100)), 50, (1,8),
                                 interpolation_method='higher'), 5)
        assert_equal(scoreatperc(np.array([1, 10, 100]), 50, (10, 100),
                                 interpolation_method='lower'), 10)
        assert_equal(scoreatperc(np.array([1, 10, 100]), 50, limit=(10, 100),
                                 interpolation_method='higher'), 100)
        assert_equal(scoreatperc(np.array([1, 10, 100]), 50, (1, 10),
                                 interpolation_method='lower'), 1)
        assert_equal(scoreatperc(np.array([1, 10, 100]), 50, limit=(1, 10),
                                 interpolation_method='higher'), 10) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:26,代碼來源:test_stats.py

示例7: test_sequence_per

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def test_sequence_per(self):
        x = arange(8) * 0.5
        expected = np.array([0, 3.5, 1.75])
        res = stats.scoreatpercentile(x, [0, 100, 50])
        assert_allclose(res, expected)
        assert_(isinstance(res, np.ndarray))
        # Test with ndarray.  Regression test for gh-2861
        assert_allclose(stats.scoreatpercentile(x, np.array([0, 100, 50])),
                        expected)
        # Also test combination of 2-D array, axis not None and array-like per
        res2 = stats.scoreatpercentile(np.arange(12).reshape((3,4)),
                                       np.array([0, 1, 100, 100]), axis=1)
        expected2 = array([[0, 4, 8],
                           [0.03, 4.03, 8.03],
                           [3, 7, 11],
                           [3, 7, 11]])
        assert_allclose(res2, expected2) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:19,代碼來源:test_stats.py

示例8: test_axis

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def test_axis(self):
        scoreatperc = stats.scoreatpercentile
        x = arange(12).reshape(3, 4)

        assert_equal(scoreatperc(x, (25, 50, 100)), [2.75, 5.5, 11.0])

        r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]]
        assert_equal(scoreatperc(x, (25, 50, 100), axis=0), r0)

        r1 = [[0.75, 4.75, 8.75], [1.5, 5.5, 9.5], [3, 7, 11]]
        assert_equal(scoreatperc(x, (25, 50, 100), axis=1), r1)

        x = array([[1, 1, 1],
                   [1, 1, 1],
                   [4, 4, 3],
                   [1, 1, 1],
                   [1, 1, 1]])
        score = stats.scoreatpercentile(x, 50)
        assert_equal(score.shape, ())
        assert_equal(score, 1.0)
        score = stats.scoreatpercentile(x, 50, axis=0)
        assert_equal(score.shape, (3,))
        assert_equal(score, [1, 1, 1]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_stats.py

示例9: run_isolation_forest

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def run_isolation_forest(features, id_list, fraction_of_outliers=.3):
    """Performs anomaly detection based on Isolation Forest."""

    rng = np.random.RandomState(1984)

    num_samples = features.shape[0]
    iso_f = IsolationForest(max_samples=num_samples,
                            contamination=fraction_of_outliers,
                            random_state=rng)
    iso_f.fit(features)
    pred_scores = iso_f.decision_function(features)

    threshold = stats.scoreatpercentile(pred_scores, 100 * fraction_of_outliers)
    outlying_ids = id_list[pred_scores < threshold]

    return outlying_ids 
開發者ID:raamana,項目名稱:visualqc,代碼行數:18,代碼來源:outliers.py

示例10: __call__

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def __call__(self, y, pred, sample_weight=None):
        pred = pred.ravel()
        diff = y - pred
        gamma = self.gamma
        if gamma is None:
            if sample_weight is None:
                gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100)
            else:
                gamma = _weighted_percentile(np.abs(diff), sample_weight, self.alpha * 100)

        gamma_mask = np.abs(diff) <= gamma
        if sample_weight is None:
            sq_loss = np.sum(0.5 * diff[gamma_mask] ** 2.0)
            lin_loss = np.sum(gamma * (np.abs(diff[~gamma_mask]) - gamma / 2.0))
            loss = (sq_loss + lin_loss) / y.shape[0]
        else:
            sq_loss = np.sum(0.5 * sample_weight[gamma_mask] * diff[gamma_mask] ** 2.0)
            lin_loss = np.sum(gamma * sample_weight[~gamma_mask] *
                              (np.abs(diff[~gamma_mask]) - gamma / 2.0))
            loss = (sq_loss + lin_loss) / sample_weight.sum()
        return loss 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:23,代碼來源:gradient_boosting.py

示例11: _get_support_mask

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def _get_support_mask(self):
        check_is_fitted(self, 'scores_')

        # Cater for NaNs
        if self.percentile == 100:
            return np.ones(len(self.scores_), dtype=np.bool)
        elif self.percentile == 0:
            return np.zeros(len(self.scores_), dtype=np.bool)

        scores = _clean_nans(self.scores_)
        treshold = stats.scoreatpercentile(scores,
                                           100 - self.percentile)
        mask = scores > treshold
        ties = np.where(scores == treshold)[0]
        if len(ties):
            max_feats = int(len(scores) * self.percentile / 100)
            kept_ties = ties[:max_feats - mask.sum()]
            mask[kept_ties] = True
        return mask 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:21,代碼來源:univariate_selection.py

示例12: find_percent_point

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def find_percent_point(percents, y):
    """
    可視化技術線比例分割的區域, 針對輸入的比例迭代操作後
    分別使用stats.scoreatpercentile和 (y.max() - y.min()) * pt + y.min()兩種
    方式進行計算的分割值, 返回對象為比例值為key的字典對象
    eg:
        input:
            percents = (0.1, 0.9)
        output:
            {0.1: (15.732749999999999, 15.5075), 0.9: (31.995000000000005, 34.387500000000003)}

    :param percents: 可迭代序列,eg: (0.1, 0.9), [0.3, 0,4, 0.8]
    :param y: 計算分割線的序列
    :return: 比例值為key的字典對象
    """
    percent_point_dict = {pt: (stats.scoreatpercentile(y, np.round(pt * 100, 1)), (y.max() - y.min()) * pt + y.min())
                          for pt in percents}

    return percent_point_dict


# noinspection PyTypeChecker 
開發者ID:bbfamily,項目名稱:abu,代碼行數:24,代碼來源:ABuTLExecute.py

示例13: find_golden_point_ex

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def find_golden_point_ex(x, y, show=False):
    """統計黃金分割計算方法,以及對應簡單可視化操作"""

    sp382 = stats.scoreatpercentile(y, 38.2)
    sp618 = stats.scoreatpercentile(y, 61.8)
    sp50 = stats.scoreatpercentile(y, 50.0)

    if show:
        with plt_show():
            # 可視化操作
            plt.plot(x, y)
            plt.axhline(sp50, color='c')
            plt.axhline(sp618, color='r')
            plt.axhline(sp382, color='g')
            _ = plt.setp(plt.gca().get_xticklabels(), rotation=30)
            plt.legend(['TLine', 'sp50', 'sp618', 'sp382'],
                       bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

    return sp382, sp50, sp618 
開發者ID:bbfamily,項目名稱:abu,代碼行數:21,代碼來源:ABuTLExecute.py

示例14: sample_571_1

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def sample_571_1():
    """
    5.7.1 黃金分割線的定義方式
    :return:
    """
    # 收盤價格序列中的最大值
    cs_max = tsla_df.close.max()
    # 收盤價格序列中的最小值
    cs_min = tsla_df.close.min()

    sp382 = (cs_max - cs_min) * 0.382 + cs_min
    sp618 = (cs_max - cs_min) * 0.618 + cs_min
    print('視覺上的382: ' + str(round(sp382, 2)))
    print('視覺上的618: ' + str(round(sp618, 2)))

    sp382_stats = stats.scoreatpercentile(tsla_df.close, 38.2)
    sp618_stats = stats.scoreatpercentile(tsla_df.close, 61.8)

    print('統計上的382: ' + str(round(sp382_stats, 2)))
    print('統計上的618: ' + str(round(sp618_stats, 2)))


# noinspection PyTypeChecker 
開發者ID:bbfamily,項目名稱:abu,代碼行數:25,代碼來源:c5.py

示例15: get_trim_mean

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import scoreatpercentile [as 別名]
def get_trim_mean(values, percentage=20):
    """
    Get the trimmed mean of a list of values.
    Explanation: This function finds the arithmetic mean of given values,
    ignoring values outside the given limits.

    Args:
        values (list): The list of values
        percentage (int): The percentage to be trimmed

    Returns:
        float: Trimmed mean. In case trimmed mean calculation fails,
            the regular mean average is returned

    """
    lower_limit = scoreatpercentile(values, percentage)
    upper_limit = scoreatpercentile(values, 100 - percentage)
    try:
        return tmean(values, limits=(lower_limit, upper_limit))
    except ValueError:
        log.warning(
            f"Failed to calculate the trimmed mean of {values}. The "
            f"Regular mean average will be calculated instead"
        )
    return sum(values) / len(values) 
開發者ID:red-hat-storage,項目名稱:ocs-ci,代碼行數:27,代碼來源:utils.py


注:本文中的scipy.stats.scoreatpercentile方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。