當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.rv_discrete方法代碼示例

本文整理匯總了Python中scipy.stats.rv_discrete方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.rv_discrete方法的具體用法?Python stats.rv_discrete怎麽用?Python stats.rv_discrete使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.rv_discrete方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: probs_to_word_ix

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def probs_to_word_ix(pk, is_first):
	if is_first:
		pk[0] = 0.0
		pk /= np.sum(pk)
	else:
		pk *= pk
		pk /= np.sum(pk)
		#for i in range(3):
		#	max_val = np.amax(pk)
		#	if max_val > 0.5:
		#		break
		#	pk *= pk
		#	pk /= np.sum(pk)

	xk = np.arange(pk.shape[0], dtype=np.int32)
	custm = stats.rv_discrete(name='custm', values=(xk, pk))
	return custm.rvs() 
開發者ID:HackerPoet,項目名稱:YouTubeCommenter,代碼行數:19,代碼來源:Generate.py

示例2: check_edge_support

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def check_edge_support(distfn, args):
    # Make sure that x=self.a and self.b are handled correctly.
    x = [distfn.a, distfn.b]
    if isinstance(distfn, stats.rv_discrete):
        x = [distfn.a - 1, distfn.b]

    npt.assert_equal(distfn.cdf(x, *args), [0.0, 1.0])
    npt.assert_equal(distfn.sf(x, *args), [1.0, 0.0])

    if distfn.name not in ('skellam', 'dlaplace'):
        # with a = -inf, log(0) generates warnings
        npt.assert_equal(distfn.logcdf(x, *args), [-np.inf, 0.0])
        npt.assert_equal(distfn.logsf(x, *args), [0.0, -np.inf])

    npt.assert_equal(distfn.ppf([0.0, 1.0], *args), x)
    npt.assert_equal(distfn.isf([0.0, 1.0], *args), x[::-1])

    # out-of-bounds for isf & ppf
    npt.assert_(np.isnan(distfn.isf([-1, 2], *args)).all())
    npt.assert_(np.isnan(distfn.ppf([-1, 2], *args)).all()) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:common_tests.py

示例3: test_pickling

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def test_pickling(self):
        # test that a frozen instance pickles and unpickles
        # (this method is a clone of common_tests.check_pickling)
        beta = stats.beta(2.3098496451481823, 0.62687954300963677)
        poiss = stats.poisson(3.)
        sample = stats.rv_discrete(values=([0, 1, 2, 3],
                                           [0.1, 0.2, 0.3, 0.4]))

        for distfn in [beta, poiss, sample]:
            distfn.random_state = 1234
            distfn.rvs(size=8)
            s = pickle.dumps(distfn)
            r0 = distfn.rvs(size=8)

            unpickled = pickle.loads(s)
            r1 = unpickled.rvs(size=8)
            assert_equal(r0, r1)

            # also smoke test some methods
            medians = [distfn.ppf(0.5), unpickled.ppf(0.5)]
            assert_equal(medians[0], medians[1])
            assert_equal(distfn.cdf(medians[0]),
                         unpickled.cdf(medians[1])) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_distributions.py

示例4: perform

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def perform(self, action):
        # get distribution about outcomes
        probabilities = self.belief[action] / np.sum(self.belief[action])
        distrib = rv_discrete(values=(range(len(probabilities)),
                                      probabilities))

        # draw sample
        sample = distrib.rvs()

        # update belief accordingly
        belief = deepcopy(self.belief)
        belief[action][sample] += 1

        # manual found
        if (self.pos == self.world.manual).all():
            print("m", end="")
            belief = {ToyWorldAction(np.array([0, 1])): [50, 1, 1, 1],
                      ToyWorldAction(np.array([0, -1])): [1, 50, 1, 1],
                      ToyWorldAction(np.array([1, 0])): [1, 1, 50, 1],
                      ToyWorldAction(np.array([-1, 0])): [1, 1, 1, 50]}

        # build next state
        pos = self._correct_position(self.pos + self.actions[sample].action)

        return ToyWorldState(pos, self.world, belief) 
開發者ID:hildensia,項目名稱:mcts,代碼行數:27,代碼來源:toy_world_state.py

示例5: sample

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def sample(self, X):
    """ sample from the conditional mixture distributions - requires the model to be fitted

    Args:
      X: values to be conditioned on when sampling - numpy array of shape (n_instances, n_dim_x)

    Returns: tuple (X, Y)
      - X - the values to conditioned on that were provided as argument - numpy array of shape (n_samples, ndim_x)
      - Y - conditional samples from the model p(y|x) - numpy array of shape (n_samples, ndim_y)
    """
    assert self.fitted
    X = self._handle_input_dimensionality(X)

    weights = np.multiply(self.alpha, self._gaussian_kernel(X))
    weights = weights / np.sum(weights, axis=1)[:,None]

    Y = np.zeros(shape=(X.shape[0], self.ndim_y))
    for i in range(X.shape[0]):
      discrete_dist = stats.rv_discrete(values=(range(weights.shape[1]), weights[i, :]))
      idx = discrete_dist.rvs()
      Y[i, :] = self.gaussians_y[idx].rvs()

    return X, Y 
開發者ID:freelunchtheorem,項目名稱:Conditional_Density_Estimation,代碼行數:25,代碼來源:LSCDE.py

示例6: custom_made_discrete_dis_pmf

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def custom_made_discrete_dis_pmf():
    """
    https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.html
    :return:
    """
    xk = np.arange(7)  # 所有可能的取值
    print(xk)  # [0 1 2 3 4 5 6]
    pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.0, 0.2)  # 各個取值的概率
    custm = stats.rv_discrete(name='custm', values=(xk, pk))

    X = custm.rvs(size=20)
    print(X)

    fig, ax = plt.subplots(1, 1)
    ax.plot(xk, custm.pmf(xk), 'ro', ms=8, mec='r')
    ax.vlines(xk, 0, custm.pmf(xk), colors='r', linestyles='-', lw=2)
    plt.title('Custom made discrete distribution(PMF)')
    plt.ylabel('Probability')
    plt.show()

# custom_made_discrete_dis_pmf() 
開發者ID:OnlyBelter,項目名稱:machine-learning-note,代碼行數:23,代碼來源:draw_pmf.py

示例7: choice_faces

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def choice_faces(verts, faces):
    num = 4000
    u1, u2, u3 = np.split(verts[faces[:, 0]] - verts[faces[:, 1]], 3, axis=1)
    v1, v2, v3 = np.split(verts[faces[:, 1]] - verts[faces[:, 2]], 3, axis=1)
    a = (u2 * v3 - u3 * v2) ** 2
    b = (u3 * v1 - u1 * v3) ** 2
    c = (u1 * v2 - u2 * v1) ** 2
    Areas = np.sqrt(a + b + c) / 2
    Areas = Areas / np.sum(Areas)
    choices = np.expand_dims(np.arange(Areas.shape[0]), 1)
    dist = stats.rv_discrete(name='custm', values=(choices, Areas))
    choices = dist.rvs(size=num)
    select_faces = faces[choices]
    return select_faces 
開發者ID:walsvid,項目名稱:Pixel2MeshPlusPlus,代碼行數:16,代碼來源:losses.py

示例8: simulate

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def simulate(self):

        endog, exog, group, time = [], [], [], []

        for i in range(self.ngroups):

            gsize = np.random.randint(self.group_size_range[0],
                                      self.group_size_range[1])

            group.append([i,] * gsize)

            time1 = np.random.normal(size=(gsize,2))
            time.append(time1)

            exog1 = np.random.normal(size=(gsize, len(self.params[0])))
            exog.append(exog1)

            # Probabilities for each outcome
            prob = [np.exp(np.dot(exog1, p)) for p in self.params]
            prob = np.vstack(prob).T
            prob /= prob.sum(1)[:, None]

            m = len(self.params)
            endog1 = []
            for k in range(gsize):
                pdist = stats.rv_discrete(values=(lrange(m),
                                                  prob[k,:]))
                endog1.append(pdist.rvs())

            endog.append(np.asarray(endog1))

        self.exog = np.concatenate(exog, axis=0)
        self.endog = np.concatenate(endog).astype(np.int32)
        self.time = np.concatenate(time, axis=0)
        self.group = np.concatenate(group)
        self.offset = np.zeros(len(self.endog), dtype=np.float64) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:38,代碼來源:gee_categorical_simulation_check.py

示例9: test_rvs

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def test_rvs(self):
        states = [-1,0,1,2,3,4]
        probability = [0.0,0.3,0.4,0.0,0.3,0.0]
        samples = 1000
        r = stats.rv_discrete(name='sample',values=(states,probability))
        x = r.rvs(size=samples)
        assert_(isinstance(x, numpy.ndarray))

        for s,p in zip(states,probability):
            assert_(abs(sum(x == s)/float(samples) - p) < 0.05)

        x = r.rvs()
        assert_(isinstance(x, int)) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:15,代碼來源:test_distributions.py

示例10: test_entropy

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def test_entropy(self):
        # Basic tests of entropy.
        pvals = np.array([0.25, 0.45, 0.3])
        p = stats.rv_discrete(values=([0, 1, 2], pvals))
        expected_h = -sum(xlogy(pvals, pvals))
        h = p.entropy()
        assert_allclose(h, expected_h)

        p = stats.rv_discrete(values=([0, 1, 2], [1.0, 0, 0]))
        h = p.entropy()
        assert_equal(h, 0.0) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_distributions.py

示例11: test_no_name_arg

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def test_no_name_arg(self):
        # If name is not given, construction shouldn't fail.  See #1508.
        stats.rv_continuous()
        stats.rv_discrete() 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:6,代碼來源:test_distributions.py

示例12: test_docstrings

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def test_docstrings():
    badones = [',\s*,', '\(\s*,', '^\s*:']
    for distname in stats.__all__:
        dist = getattr(stats, distname)
        if isinstance(dist, (stats.rv_discrete, stats.rv_continuous)):
            for regex in badones:
                assert_( re.search(regex, dist.__doc__) is None) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:9,代碼來源:test_distributions.py

示例13: generate_observation_from_state

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def generate_observation_from_state(self, state_index):
        """
        Generate a single synthetic observation data from a given state.

        Parameters
        ----------
        state_index : int
            Index of the state from which observations are to be generated.

        Returns
        -------
        observation : float
            A single observation from the given state.

        Examples
        --------

        Generate an observation model.

        >>> output_model = DiscreteOutputModel(np.array([[0.5,0.5],[0.1,0.9]]))

        Generate sample from each state.

        >>> observation = output_model.generate_observation_from_state(0)

        """
        # generate random generator (note that this is inefficient - better use one of the next functions
        import scipy.stats
        gen = scipy.stats.rv_discrete(values=(range(len(self._output_probabilities[state_index])), 
                                              self._output_probabilities[state_index]))
        gen.rvs(size=1) 
開發者ID:bhmm,項目名稱:bhmm,代碼行數:33,代碼來源:discrete.py

示例14: generate_observations_from_state

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def generate_observations_from_state(self, state_index, nobs):
        """
        Generate synthetic observation data from a given state.

        Parameters
        ----------
        state_index : int
            Index of the state from which observations are to be generated.
        nobs : int
            The number of observations to generate.

        Returns
        -------
        observations : numpy.array of shape(nobs,) with type dtype
            A sample of `nobs` observations from the specified state.

        Examples
        --------

        Generate an observation model.

        >>> output_model = DiscreteOutputModel(np.array([[0.5,0.5],[0.1,0.9]]))

        Generate sample from each state.

        >>> observations = [output_model.generate_observations_from_state(state_index, nobs=100) for state_index in range(output_model.nstates)]

        """
        import scipy.stats
        gen = scipy.stats.rv_discrete(values=(range(self._nsymbols), self._output_probabilities[state_index]))
        gen.rvs(size=nobs) 
開發者ID:bhmm,項目名稱:bhmm,代碼行數:33,代碼來源:discrete.py

示例15: test_rvs

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import rv_discrete [as 別名]
def test_rvs(self):
        states = [-1, 0, 1, 2, 3, 4]
        probability = [0.0, 0.3, 0.4, 0.0, 0.3, 0.0]
        samples = 1000
        r = stats.rv_discrete(name='sample', values=(states, probability))
        x = r.rvs(size=samples)
        assert_(isinstance(x, numpy.ndarray))

        for s, p in zip(states, probability):
            assert_(abs(sum(x == s)/float(samples) - p) < 0.05)

        x = r.rvs()
        assert_(isinstance(x, int)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:15,代碼來源:test_distributions.py


注:本文中的scipy.stats.rv_discrete方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。