本文整理匯總了Python中scipy.stats.randint方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.randint方法的具體用法?Python stats.randint怎麽用?Python stats.randint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.randint方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_w_prep_fit
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_w_prep_fit():
"""[Model Selection] Test run with preprocessing, single step."""
evl = Evaluator(mape_scorer, cv=5, shuffle=False, random_state=100,
verbose=True)
with open(os.devnull, 'w') as f, redirect_stdout(f):
evl.fit(X, y,
estimators=[OLS()],
param_dicts={'ols': {'offset': randint(1, 10)}},
preprocessing={'pr': [Scale()], 'no': []},
n_iter=3)
np.testing.assert_approx_equal(
evl.results['test_score-m']['no.ols'],
-24.903229451043195)
np.testing.assert_approx_equal(
evl.results['test_score-m']['pr.ols'],
-26.510708862278072, 1)
assert evl.results['params']['no.ols']['offset'] == 4
assert evl.results['params']['pr.ols']['offset'] == 4
示例2: erp_distance_measure_getter
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def erp_distance_measure_getter(X):
"""
generate the erp distance measure
:param X: dataset to derive parameter ranges from
:return: distance measure and parameter range dictionary
"""
stdp = dataset_properties.stdp(X)
instance_length = dataset_properties.max_instance_length(
X) # todo should this use the max instance
# length for unequal length dataset instances?
max_raw_warping_window = np.floor((instance_length + 1) / 4)
n_dimensions = 1 # todo use other dimensions
return {
'distance_measure': [cython_wrapper(erp_distance)],
'dim_to_use': stats.randint(low=0, high=n_dimensions),
'g': stats.uniform(0.2 * stdp, 0.8 * stdp - 0.2 * stdp),
'band_size': stats.randint(low=0, high=max_raw_warping_window + 1)
# scipy stats randint is exclusive on the max value, hence + 1
}
示例3: lcss_distance_measure_getter
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def lcss_distance_measure_getter(X):
"""
generate the lcss distance measure
:param X: dataset to derive parameter ranges from
:return: distance measure and parameter range dictionary
"""
stdp = dataset_properties.stdp(X)
instance_length = dataset_properties.max_instance_length(
X) # todo should this use the max instance
# length for unequal length dataset instances?
max_raw_warping_window = np.floor((instance_length + 1) / 4)
n_dimensions = 1 # todo use other dimensions
return {
'distance_measure': [cython_wrapper(lcss_distance)],
'dim_to_use': stats.randint(low=0, high=n_dimensions),
'epsilon': stats.uniform(0.2 * stdp, stdp - 0.2 * stdp),
# scipy stats randint is exclusive on the max value, hence + 1
'delta': stats.randint(low=0, high=max_raw_warping_window + 1)
}
示例4: test_params
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_params():
"""[Model Selection] Test raises on bad params."""
evl = Evaluator(mape_scorer, verbose=2)
np.testing.assert_raises(ValueError,
evl.fit, X, y,
estimators=[OLS()],
param_dicts={'bad.ols':
{'offset': randint(1, 10)}},
preprocessing={'prep': [Scale()]})
示例5: test_raises
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_raises():
"""[Model Selection] Test raises on error."""
evl = Evaluator(bad_scorer, verbose=1)
with open(os.devnull, 'w') as f, redirect_stdout(f):
np.testing.assert_raises(
ValueError, evl.fit, X, y, estimators=[OLS()],
param_dicts={'ols': {'offset': randint(1, 10)}}, n_iter=1)
示例6: test_passes
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_passes():
"""[Model Selection] Test sets error score on failed scoring."""
evl = Evaluator(bad_scorer, error_score=0, n_jobs=1, verbose=5)
with open(os.devnull, 'w') as f, redirect_stdout(f):
evl = np.testing.assert_warns(FitFailedWarning,
evl.fit, X, y,
estimators=[OLS()],
param_dicts={'ols':
{'offset': randint(1, 10)}},
n_iter=1)
assert evl.results['test_score-m']['ols'] == 0
示例7: test_no_prep
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_no_prep():
"""[Model Selection] Test run without preprocessing."""
evl = Evaluator(mape_scorer, cv=5, shuffle=False,
random_state=100, verbose=12)
with open(os.devnull, 'w') as f, redirect_stdout(f):
evl.fit(X, y,
estimators=[OLS()],
param_dicts={'ols': {'offset': randint(1, 10)}},
n_iter=3)
np.testing.assert_approx_equal(
evl.results['test_score-m']['ols'],
-24.903229451043195)
assert evl.results['params']['ols']['offset'] == 4
示例8: test_w_prep_set_params
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_w_prep_set_params():
"""[Model Selection] Test run with preprocessing, sep param dists."""
evl = Evaluator(mape_scorer, cv=5, shuffle=False, random_state=100,
verbose=2)
params = {'no.ols': {'offset': randint(3, 6)},
'pr.ols': {'offset': randint(1, 3)},
}
with open(os.devnull, 'w') as f, redirect_stdout(f):
evl.fit(X, y,
estimators={'pr': [OLS()], 'no': [OLS()]},
param_dicts=params,
preprocessing={'pr': [Scale()], 'no': []},
n_iter=10)
np.testing.assert_approx_equal(
evl.results['test_score-m']['no.ols'],
-18.684229451043198)
np.testing.assert_approx_equal(
evl.results['test_score-m']['pr.ols'],
-7.2594502123869491)
assert evl.results['params']['no.ols']['offset'] == 3
assert evl.results['params']['pr.ols']['offset'] == 1
示例9: test_rvs
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_rvs(self):
vals = stats.randint.rvs(5,30,size=100)
assert_(numpy.all(vals < 30) & numpy.all(vals >= 5))
assert_(len(vals) == 100)
vals = stats.randint.rvs(5,30,size=(2,50))
assert_(numpy.shape(vals) == (2,50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.randint.rvs(15,46)
assert_((val >= 15) & (val < 46))
assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val)))
val = stats.randint(15,46).rvs(3)
assert_(val.dtype.char in typecodes['AllInteger'])
示例10: test_pdf
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_pdf(self):
k = numpy.r_[0:36]
out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0)
vals = stats.randint.pmf(k,5,30)
assert_array_almost_equal(vals,out)
示例11: test_cdf
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_cdf(self):
x = numpy.r_[0:36:100j]
k = numpy.floor(x)
out = numpy.select([k >= 30,k >= 5],[1.0,(k-5.0+1)/(30-5.0)],0)
vals = stats.randint.cdf(x,5,30)
assert_array_almost_equal(vals, out, decimal=12)
示例12: parallel_params
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def parallel_params(log_dir, niter=10000, seed=123456789):
"""
Create the parameters for a parallel run.
@param log_dir: The directory to store the results in.
@param niter: The number of iterations to perform.
@param seed: The seed for the random number generators.
@return: Returns a tuple containing the parameters.
"""
static_params = {
'ninputs': 784,
'trim': 1e-4,
'disable_boost': True,
'seed': seed,
'pct_active': None,
'random_permanence': True,
'pwindow': 0.5,
'global_inhibition': True,
'syn_th': 0.5,
'pinc': 0.001,
'pdec': 0.001,
'nepochs': 10
}
dynamic_params = {
'ncolumns': randint(500, 3500),
'nactive': uniform(0.5, 0.35), # As a % of the number of columns
'nsynapses': randint(25, 784),
'seg_th': uniform(0, 0.2), # As a % of the number of synapses
'log_dir': log_dir
}
# Build the parameter generator
gen = ParamGenerator(dynamic_params, niter, 1, 784)
params = {key:gen for key in dynamic_params}
return static_params, params
示例13: test_rvs
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_rvs(self):
vals = stats.randint.rvs(5, 30, size=100)
assert_(numpy.all(vals < 30) & numpy.all(vals >= 5))
assert_(len(vals) == 100)
vals = stats.randint.rvs(5, 30, size=(2, 50))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.randint.rvs(15, 46)
assert_((val >= 15) & (val < 46))
assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val)))
val = stats.randint(15, 46).rvs(3)
assert_(val.dtype.char in typecodes['AllInteger'])
示例14: test_pdf
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_pdf(self):
k = numpy.r_[0:36]
out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0)
vals = stats.randint.pmf(k, 5, 30)
assert_array_almost_equal(vals, out)
示例15: test_cdf
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import randint [as 別名]
def test_cdf(self):
x = numpy.r_[0:36:100j]
k = numpy.floor(x)
out = numpy.select([k >= 30, k >= 5], [1.0, (k-5.0+1)/(30-5.0)], 0)
vals = stats.randint.cdf(x, 5, 30)
assert_array_almost_equal(vals, out, decimal=12)