本文整理匯總了Python中scipy.stats.probplot方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.probplot方法的具體用法?Python stats.probplot怎麽用?Python stats.probplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.probplot方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _norm_plot_pos
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def _norm_plot_pos(observations):
"""
Computes standard normal (Gaussian) plotting positions using scipy.
Parameters
----------
observations : array-like
Sequence of observed quantities.
Returns
-------
plotting_position : array of floats
"""
ppos, sorted_res = stats.probplot(observations, fit=False)
return stats.norm.cdf(ppos)
示例2: test_dist_keyword
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def test_dist_keyword(self):
np.random.seed(12345)
x = stats.norm.rvs(size=20)
osm1, osr1 = stats.probplot(x, fit=False, dist='t', sparams=(3,))
osm2, osr2 = stats.probplot(x, fit=False, dist=stats.t, sparams=(3,))
assert_allclose(osm1, osm2)
assert_allclose(osr1, osr2)
assert_raises(ValueError, stats.probplot, x, dist='wrong-dist-name')
assert_raises(AttributeError, stats.probplot, x, dist=[])
class custom_dist(object):
"""Some class that looks just enough like a distribution."""
def ppf(self, q):
return stats.norm.ppf(q, loc=2)
osm1, osr1 = stats.probplot(x, sparams=(2,), fit=False)
osm2, osr2 = stats.probplot(x, dist=custom_dist(), fit=False)
assert_allclose(osm1, osm2)
assert_allclose(osr1, osr2)
示例3: test_plot_kwarg
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def test_plot_kwarg(self):
np.random.seed(7654321)
fig = plt.figure()
fig.add_subplot(111)
x = stats.t.rvs(3, size=100)
res1, fitres1 = stats.probplot(x, plot=plt)
plt.close()
res2, fitres2 = stats.probplot(x, plot=None)
res3 = stats.probplot(x, fit=False, plot=plt)
plt.close()
res4 = stats.probplot(x, fit=False, plot=None)
# Check that results are consistent between combinations of `fit` and
# `plot` keywords.
assert_(len(res1) == len(res2) == len(res3) == len(res4) == 2)
assert_allclose(res1, res2)
assert_allclose(res1, res3)
assert_allclose(res1, res4)
assert_allclose(fitres1, fitres2)
# Check that a Matplotlib Axes object is accepted
fig = plt.figure()
ax = fig.add_subplot(111)
stats.probplot(x, fit=False, plot=ax)
plt.close()
示例4: test_normality_increase_lambert
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def test_normality_increase_lambert(self):
# Generate random data and check that it is more normal after inference
for i, y in enumerate([np.random.standard_cauchy(size=ns), experimental_data]):
print('Distribution %d' % i)
print('Before')
print(('anderson: %0.3f\tshapiro: %0.3f' % (anderson(y)[0], shapiro(y)[0])).expandtabs(30))
stats.probplot(y, dist="norm", plot=plt)
plt.savefig(os.path.join(self.test_dir, '%d_before.png' % i))
plt.clf()
tau = g.igmm(y)
x = g.w_t(y, tau)
print('After')
print(('anderson: %0.3f\tshapiro: %0.3f' % (anderson(x)[0], shapiro(x)[0])).expandtabs(30))
stats.probplot(x, dist="norm", plot=plt)
plt.savefig(os.path.join(self.test_dir, '%d_after.png' % i))
plt.clf()
示例5: test_probplot_bad_arg
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def test_probplot_bad_arg():
"""Raise ValueError when given an invalid distribution."""
data = [1]
assert_raises(ValueError, stats.probplot, data, dist="plate_of_shrimp")
示例6: QQ_plot
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def QQ_plot(self):
"""
returns the QQ-plot with normal distribution
"""
plt.figure(figsize=(12, 8), facecolor='w', edgecolor='k',
linewidth= 2.0, frameon=True)
stats.probplot(self.scvr, dist="norm", plot=plt)
plt.xlabel('SCVR')
plt.ylabel('Standard quantile')
plt.show()
示例7: test_basic
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def test_basic(self):
np.random.seed(12345)
x = stats.norm.rvs(size=20)
osm, osr = stats.probplot(x, fit=False)
osm_expected = [-1.8241636, -1.38768012, -1.11829229, -0.91222575,
-0.73908135, -0.5857176, -0.44506467, -0.31273668,
-0.18568928, -0.06158146, 0.06158146, 0.18568928,
0.31273668, 0.44506467, 0.5857176, 0.73908135,
0.91222575, 1.11829229, 1.38768012, 1.8241636]
assert_allclose(osr, np.sort(x))
assert_allclose(osm, osm_expected)
res, res_fit = stats.probplot(x, fit=True)
res_fit_expected = [1.05361841, 0.31297795, 0.98741609]
assert_allclose(res_fit, res_fit_expected)
示例8: test_sparams_keyword
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def test_sparams_keyword(self):
np.random.seed(123456)
x = stats.norm.rvs(size=100)
# Check that None, () and 0 (loc=0, for normal distribution) all work
# and give the same results
osm1, osr1 = stats.probplot(x, sparams=None, fit=False)
osm2, osr2 = stats.probplot(x, sparams=0, fit=False)
osm3, osr3 = stats.probplot(x, sparams=(), fit=False)
assert_allclose(osm1, osm2)
assert_allclose(osm1, osm3)
assert_allclose(osr1, osr2)
assert_allclose(osr1, osr3)
# Check giving (loc, scale) params for normal distribution
osm, osr = stats.probplot(x, sparams=(), fit=False)
示例9: test_probplot_bad_args
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def test_probplot_bad_args(self):
# Raise ValueError when given an invalid distribution.
assert_raises(ValueError, stats.probplot, [1], dist="plate_of_shrimp")
示例10: test_array_of_size_one
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def test_array_of_size_one(self):
with np.errstate(invalid='ignore'):
assert_equal(stats.probplot([1], fit=True),
((np.array([0.]), np.array([1])),
(np.nan, np.nan, 0.0)))
示例11: test_empty
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def test_empty(self):
# For consistency with probplot return for one empty array,
# ppcc contains all zeros and svals is the same as for normal array
# input.
svals, ppcc = stats.ppcc_plot([], 0, 1)
assert_allclose(svals, np.linspace(0, 1, num=80))
assert_allclose(ppcc, np.zeros(80, dtype=float))
示例12: qqplot
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def qqplot(self, x: np.ndarray, prefix: Text = 'qq', output_dir: Text = "/tmp/"):
"""Show qq plots compared to normal before and after the transform."""
x = _update_x(x)
y = self.transform(x)
n_dim = y.shape[1]
for i in range(n_dim):
stats.probplot(x[:, i], dist="norm", plot=plt)
plt.savefig(os.path.join(output_dir, prefix + '_%d_before.png' % i))
plt.clf()
stats.probplot(y[:, i], dist="norm", plot=plt)
plt.savefig(os.path.join(output_dir, prefix + '_%d_after.png' % i))
plt.clf()
示例13: decomp_plot
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def decomp_plot(df, time, signal, estimator, residue, name = None, format='png', max_length = 1000, horizon = 1) :
assert(df.shape[0] > 0)
assert(df.shape[1] > 0)
assert(time in df.columns)
assert(signal in df.columns)
assert(estimator in df.columns)
assert(residue in df.columns)
import matplotlib
# print("MATPLOTLIB_BACKEND", matplotlib.get_backend())
# matplotlib.use('Agg')
import matplotlib.pyplot as plt
df1 = df.tail(max(max_length , 4 * horizon));
if(name is not None):
plt.switch_backend('Agg')
fig, axs = plt.subplots(ncols=2, figsize=(32, 16))
lColor = COMPONENT_COLOR;
if(name is not None and name.endswith("Forecast")):
lColor = FORECAST_COLOR;
df1.plot.line(time, [signal, estimator, residue],
color=[SIGNAL_COLOR, lColor, RESIDUE_COLOR],
ax=axs[0] , grid = True, legend=False)
add_patched_legend(axs[0] , [signal, estimator, residue])
residues = df1[residue].values
import scipy.stats as scistats
resid = residues[~np.isnan(residues)]
scistats.probplot(resid, dist="norm", plot=axs[1])
if(name is not None):
plt.switch_backend('Agg')
fig.savefig(name + '_decomp_output.' + format)
plt.close(fig)
示例14: decomp_plot_as_png_base64
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import probplot [as 別名]
def decomp_plot_as_png_base64(df, time, signal, estimator, residue, name = None, max_length = 1000, horizon = 1) :
assert(df.shape[0] > 0)
assert(df.shape[1] > 0)
assert(time in df.columns)
assert(signal in df.columns)
assert(estimator in df.columns)
assert(residue in df.columns)
import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.switch_backend('Agg')
df1 = df.tail(max(max_length, 4 * horizon));
fig, axs = plt.subplots(ncols=2, figsize=(16, 8))
lColor = COMPONENT_COLOR;
if(name is not None and name.endswith("Forecast")):
lColor = FORECAST_COLOR;
df1.plot.line(time, [signal, estimator, residue],
color=[SIGNAL_COLOR, lColor, RESIDUE_COLOR],
ax=axs[0] , grid = True, legend = False)
add_patched_legend(axs[0] , [signal, estimator, residue])
residues = df1[residue].values
import scipy.stats as scistats
resid = residues[~np.isnan(residues)]
scistats.probplot(resid, dist="norm", plot=axs[1])
figfile = BytesIO()
fig.savefig(figfile, format='png')
figfile.seek(0) # rewind to beginning of file
figdata_png = base64.b64encode(figfile.getvalue())
plt.close(fig)
return figdata_png.decode('utf8')