當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.poisson方法代碼示例

本文整理匯總了Python中scipy.stats.poisson方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.poisson方法的具體用法?Python stats.poisson怎麽用?Python stats.poisson使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.poisson方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: init_parameters

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def init_parameters(self):
        # Init weights
        if self.init_method == 'x': # Xavier            
            torch.nn.init.xavier_uniform_(self.weight)
        elif self.init_method == 'k': # Kaiming
            torch.nn.init.kaiming_uniform_(self.weight)
        elif self.init_method == 'p': # Poisson
            mu=self.kernel_size[0]/2 
            dist = poisson(mu)
            x = np.arange(0, self.kernel_size[0])
            y = np.expand_dims(dist.pmf(x),1)
            w = signal.convolve2d(y, y.transpose(), 'full')
            w = torch.Tensor(w).type_as(self.weight)
            w = torch.unsqueeze(w,0)
            w = torch.unsqueeze(w,1)
            w = w.repeat(self.out_channels, 1, 1, 1)
            w = w.repeat(1, self.in_channels, 1, 1)
            self.weight.data = w + torch.rand(w.shape)
            
        # Init bias
        self.bias = torch.nn.Parameter(torch.zeros(self.out_channels)+0.01)
        
        
# Non-negativity enforcement class 
開發者ID:abdo-eldesokey,項目名稱:nconv,代碼行數:26,代碼來源:nconv.py

示例2: navg_layer

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def navg_layer(self, kernel_size, init_stdev=0.5, in_channels=1, out_channels=1, initalizer='x', pos=False, groups=1):
        
        navg = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=1, 
                         padding=(kernel_size[0]//2, kernel_size[1]//2), bias=False, groups=groups)
        
        weights = navg.weight            
        
        if initalizer == 'x': # Xavier            
            torch.nn.init.xavier_uniform(weights)
        elif initalizer == 'k':    
            torch.nn.init.kaiming_uniform(weights)
        elif initalizer == 'p':    
            mu=kernel_size[0]/2 
            dist = poisson(mu)
            x = np.arange(0, kernel_size[0])
            y = np.expand_dims(dist.pmf(x),1)
            w = signal.convolve2d(y, y.transpose(), 'full')
            w = torch.FloatTensor(w).cuda()
            w = torch.unsqueeze(w,0)
            w = torch.unsqueeze(w,1)
            w = w.repeat(out_channels, 1, 1, 1)
            w = w.repeat(1, in_channels, 1, 1)
            weights.data = w + torch.rand(w.shape).cuda()
         
        return navg 
開發者ID:abdo-eldesokey,項目名稱:nconv,代碼行數:27,代碼來源:unguided_network.py

示例3: test_pickling

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def test_pickling(self):
        # test that a frozen instance pickles and unpickles
        # (this method is a clone of common_tests.check_pickling)
        beta = stats.beta(2.3098496451481823, 0.62687954300963677)
        poiss = stats.poisson(3.)
        sample = stats.rv_discrete(values=([0, 1, 2, 3],
                                           [0.1, 0.2, 0.3, 0.4]))

        for distfn in [beta, poiss, sample]:
            distfn.random_state = 1234
            distfn.rvs(size=8)
            s = pickle.dumps(distfn)
            r0 = distfn.rvs(size=8)

            unpickled = pickle.loads(s)
            r1 = unpickled.rvs(size=8)
            assert_equal(r0, r1)

            # also smoke test some methods
            medians = [distfn.ppf(0.5), unpickled.ppf(0.5)]
            assert_equal(medians[0], medians[1])
            assert_equal(distfn.cdf(medians[0]),
                         unpickled.cdf(medians[1])) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_distributions.py

示例4: _LL

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def _LL(self, data, rate):
    """Return likelihood of the given data with the given rate as the poisson parameter."""
    observed_count = np.array(data[:, 0])
    allocated_count = np.array(data[:, 1])
    output_array = np.zeros(len(observed_count))

    assert len(observed_count) == len(allocated_count)

    output_array += (observed_count < allocated_count) * stats.poisson.pmf(
        observed_count, rate)
    # The probability of observing a count equal to the allocated count is
    # the tail of the poisson pmf from the observed_count value.
    # Summing the tail is equivalent to 1-the sum of the head up to
    # observed_count which is the value of the cdf at the observed_count-1.
    output_array += (observed_count == allocated_count) * (
        1.0 - stats.poisson.cdf(observed_count - 1, rate))

    return output_array 
開發者ID:google,項目名稱:ml-fairness-gym,代碼行數:20,代碼來源:allocation_agents.py

示例5: __init__

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def __init__(self, parameters, name='Poisson'):
        """This class implements a probabilistic model following a poisson distribution.

        Parameters
        ----------
        parameters: list
            A list containing one entry, the mean of the distribution.

        name: string
            The name that should be given to the probabilistic model in the journal file.
        """

        if not isinstance(parameters, list):
            raise TypeError('Input for Poisson has to be of type list.')
        if len(parameters)!=1:
            raise ValueError('Input for Poisson has to be of length 1.')

        self._dimension = 1
        input_parameters = InputConnector.from_list(parameters)
        super(Poisson, self).__init__(input_parameters, name)
        self.visited = False 
開發者ID:eth-cscs,項目名稱:abcpy,代碼行數:23,代碼來源:discretemodels.py

示例6: forward_simulate

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def forward_simulate(self, input_values, k, rng=np.random.RandomState(), mpi_comm=None):
        """
        Samples k values from the defined possion distribution.

        Parameters
        ----------
        input_values: list
            List of input parameters, in the same order as specified in the InputConnector passed to the init function
        k: integer
            The number of samples.
        rng: random number generator
            The random number generator to be used.

        Returns
        -------
        list: [np.ndarray]
            A list containing the sampled values as np-array.


        """

        result = rng.poisson(int(input_values[0]), k)
        return [np.array([x]) for x in result] 
開發者ID:eth-cscs,項目名稱:abcpy,代碼行數:25,代碼來源:discretemodels.py

示例7: pmf

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def pmf(self, input_values, x):
        """Calculates the probability mass function of the distribution at point x.

        Parameters
        ----------
        input_values: list
            List of input parameters, in the same order as specified in the InputConnector passed to the init function
        x: integer
            The point at which the pmf should be evaluated.

        Returns
        -------
        Float
            The evaluated pmf at point x.
        """

        pmf = poisson(int(input_values[0])).pmf(x)
        self.calculated_pmf = pmf
        return pmf 
開發者ID:eth-cscs,項目名稱:abcpy,代碼行數:21,代碼來源:discretemodels.py

示例8: setUp

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def setUp(self):
        '''
        Saves the current random state for later recovery, sets the random seed
        to get reproducible results and manually constructs a mixed vine.
        '''
        # Save random state for later recovery
        self.random_state = np.random.get_state()
        # Set fixed random seed
        np.random.seed(0)
        # Manually construct mixed vine
        self.dim = 3  # Dimension
        self.vine = MixedVine(self.dim)
        # Specify marginals
        self.vine.set_marginal(0, norm(0, 1))
        self.vine.set_marginal(1, poisson(5))
        self.vine.set_marginal(2, gamma(2, 0, 4))
        # Specify pair copulas
        self.vine.set_copula(1, 0, GaussianCopula(0.5))
        self.vine.set_copula(1, 1, FrankCopula(4))
        self.vine.set_copula(2, 0, ClaytonCopula(5)) 
開發者ID:asnelt,項目名稱:mixedvines,代碼行數:22,代碼來源:test_mixedvine.py

示例9: test_resample_1d_statistical_test_poisson

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def test_resample_1d_statistical_test_poisson(rng):
    # poisson is behaving super weird in scipy
    x = rng.poisson(1.5, size=1000)
    mu = np.mean(x)

    xe = (0, 1, 2, 3, 10)
    # somehow location 1 is needed here...
    wref = np.diff(stats.poisson(mu, 1).cdf(xe)) * len(x)

    # compute P values for replicas compared to original
    prob = []
    for bx in resample(x, 100, method="poisson", random_state=rng):
        w = np.histogram(bx, bins=xe)[0]
        c = stats.chisquare(w, wref)
        prob.append(c.pvalue)

    # check whether P value distribution is flat
    # - test has chance probability of 1 % to fail randomly
    # - if it fails due to programming error, value is typically < 1e-20
    wp = np.histogram(prob, range=(0, 1))[0]
    c = stats.chisquare(wp)
    assert c.pvalue > 0.01 
開發者ID:dsaxton,項目名稱:resample,代碼行數:24,代碼來源:test_bootstrap.py

示例10: _resample_parametric

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def _resample_parametric(
    sample: np.ndarray, size: int, dist, rng: np.random.Generator,
) -> Generator[np.ndarray, None, None]:
    n = len(sample)

    # fit parameters by maximum likelihood and sample from that
    if dist == stats.poisson:
        # - poisson has no fit method and there is no scale parameter
        # - random number generation for poisson distribution in scipy seems to be buggy
        mu = np.mean(sample)
        for _ in range(size):
            yield rng.poisson(mu, size=n)
    else:
        args = _fit_parametric_family(dist, sample)
        dist = dist(*args)
        for _ in range(size):
            yield dist.rvs(size=n, random_state=rng) 
開發者ID:dsaxton,項目名稱:resample,代碼行數:19,代碼來源:bootstrap.py

示例11: poisson_pmf

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def poisson_pmf(mu=3):
    """
    泊鬆分布
    https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html#scipy.stats.poisson
    :param mu: 單位時間(或單位麵積)內隨機事件的平均發生率
    :return:
    """
    poisson_dis = stats.poisson(mu)
    x = np.arange(poisson_dis.ppf(0.001), poisson_dis.ppf(0.999))
    print(x)
    fig, ax = plt.subplots(1, 1)
    ax.plot(x, poisson_dis.pmf(x), 'bo', ms=8, label='poisson pmf')
    ax.vlines(x, 0, poisson_dis.pmf(x), colors='b', lw=5, alpha=0.5)
    ax.legend(loc='best', frameon=False)
    plt.ylabel('Probability')
    plt.title('PMF of poisson distribution(mu={})'.format(mu))
    plt.show()

# poisson_pmf(mu=8) 
開發者ID:OnlyBelter,項目名稱:machine-learning-note,代碼行數:21,代碼來源:draw_pmf.py

示例12: predict_distribution

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def predict_distribution(self, exog):
        '''return frozen scipy.stats distribution with mu at estimated prediction
        '''
        if not hasattr(self, result):
            raise ValueError
        else:
            mu = np.exp(np.dot(exog, params))
            return stats.poisson(mu, loc=0) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:10,代碼來源:count.py

示例13: test_rvs

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def test_rvs(self):
        vals = stats.poisson.rvs(0.5, size=(2, 50))
        assert_(numpy.all(vals >= 0))
        assert_(numpy.shape(vals) == (2, 50))
        assert_(vals.dtype.char in typecodes['AllInteger'])
        val = stats.poisson.rvs(0.5)
        assert_(isinstance(val, int))
        val = stats.poisson(0.5).rvs(3)
        assert_(isinstance(val, numpy.ndarray))
        assert_(val.dtype.char in typecodes['AllInteger']) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:12,代碼來源:test_distributions.py

示例14: test_stats

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def test_stats(self):
        mu = 16.0
        result = stats.poisson.stats(mu, moments='mvsk')
        assert_allclose(result, [mu, mu, np.sqrt(1.0/mu), 1.0/mu]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:6,代碼來源:test_distributions.py

示例15: test_poisson

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import poisson [as 別名]
def test_poisson(self):
        # poisson, use lower bound only
        prob_bounds = stats.poisson.expect(lambda x: 1, args=(2,), lb=3,
                                      conditional=False)
        prob_b_true = 1-stats.poisson.cdf(2,2)
        assert_almost_equal(prob_bounds, prob_b_true, decimal=14)

        prob_lb = stats.poisson.expect(lambda x: 1, args=(2,), lb=2,
                                       conditional=True)
        assert_almost_equal(prob_lb, 1, decimal=14) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:12,代碼來源:test_distributions.py


注:本文中的scipy.stats.poisson方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。