當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.pearsonr方法代碼示例

本文整理匯總了Python中scipy.stats.pearsonr方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.pearsonr方法的具體用法?Python stats.pearsonr怎麽用?Python stats.pearsonr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.pearsonr方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: joint_plot

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def joint_plot(x, y, xlabel=None,
               ylabel=None, xlim=None, ylim=None,
               loc="best", color='#0485d1',
               size=8, markersize=50, kind="kde",
               scatter_color="r"):
    with sns.axes_style("darkgrid"):
        if xlabel and ylabel:
            g = SubsampleJointGrid(xlabel, ylabel,
                    data=DataFrame(data={xlabel: x, ylabel: y}),
                    space=0.1, ratio=2, size=size, xlim=xlim, ylim=ylim)
        else:
            g = SubsampleJointGrid(x, y, size=size,
                    space=0.1, ratio=2, xlim=xlim, ylim=ylim)
        g.plot_joint(sns.kdeplot, shade=True, cmap="Blues")
        g.plot_sub_joint(plt.scatter, 1000, s=20, c=scatter_color, alpha=0.3)
        g.plot_marginals(sns.distplot, kde=False, rug=False)
        g.annotate(ss.pearsonr, fontsize=25, template="{stat} = {val:.2g}\np = {p:.2g}")
        g.ax_joint.set_yticklabels(g.ax_joint.get_yticks())
        g.ax_joint.set_xticklabels(g.ax_joint.get_xticks())
    return g 
開發者ID:Noahs-ARK,項目名稱:idea_relations,代碼行數:22,代碼來源:plot_functions.py

示例2: test_compute_correlations_between_versions_custom_columns

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def test_compute_correlations_between_versions_custom_columns(self):
        df_old = pd.DataFrame({'id': ['a', 'b', 'c'],
                               'feature1': [1.3, 1.5, 2.1],
                               'feature2': [1.1, 6.2, 2.1],
                               'r1': [2, 3, 4]})
        df_new = pd.DataFrame({'id': ['a', 'b', 'c'],
                               'feature1': [-1.3, -1.5, -2.1],
                               'feature2': [1.1, 6.2, 2.1],
                               'r1': [2, 3, 4]})

        df_cors = Comparer.compute_correlations_between_versions(df_old,
                                                                 df_new,
                                                                 human_score='r1',
                                                                 id_column='id')

        assert_almost_equal(df_cors.at['feature1', 'old_new'], -1.0)
        assert_almost_equal(df_cors.at['feature2', 'old_new'], 1.0)
        assert_equal(df_cors.at['feature1', 'human_old'], pearsonr(df_old['feature1'],
                                                                   df_old['r1'])[0])
        assert_equal(df_cors.at['feature1', 'human_new'], pearsonr(df_new['feature1'],
                                                                   df_new['r1'])[0])
        assert_equal(df_cors.at['feature1', "N"], 3) 
開發者ID:EducationalTestingService,項目名稱:rsmtool,代碼行數:24,代碼來源:test_comparer.py

示例3: betaseries_file

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def betaseries_file(tmpdir_factory,
                    deriv_betaseries_fname=deriv_betaseries_fname):
    bfile = tmpdir_factory.mktemp("beta").ensure(deriv_betaseries_fname)
    np.random.seed(3)
    num_trials = 40
    tgt_corr = 0.1
    bs1 = np.random.rand(num_trials)
    # create another betaseries with a target correlation
    bs2 = minimize(lambda x: abs(tgt_corr - pearsonr(bs1, x)[0]),
                   np.random.rand(num_trials)).x

    # two identical beta series
    bs_data = np.array([[[bs1, bs2]]])

    # the nifti image
    bs_img = nib.Nifti1Image(bs_data, np.eye(4))
    bs_img.to_filename(str(bfile))

    return bfile 
開發者ID:HBClab,項目名稱:NiBetaSeries,代碼行數:21,代碼來源:conftest.py

示例4: time_dist

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def time_dist(datasets_dimred, time):
    time_dist = euclidean_distances(time, time)

    time_dists, scores = [], []
    for i in range(time_dist.shape[0]):
        for j in range(time_dist.shape[1]):
            if i >= j:
                continue
            score = np.mean(euclidean_distances(
                datasets_dimred[i], datasets_dimred[j]
            ))
            time_dists.append(time_dist[i, j])
            scores.append(score)

    print('Spearman rho = {}'.format(spearmanr(time_dists, scores)))
    print('Pearson rho = {}'.format(pearsonr(time_dists, scores))) 
開發者ID:brianhie,項目名稱:scanorama,代碼行數:18,代碼來源:time_align.py

示例5: word_sim_test

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def word_sim_test(filename, pos_vectors):
    delim = ','
    actual_sim_list, pred_sim_list = [], []
    missed = 0

    with open(filename, 'r') as pairs:
        for pair in pairs:
            w1, w2, actual_sim = pair.strip().split(delim)

            try:
                w1_vec = create_word_vector(w1, pos_vectors)
                w2_vec = create_word_vector(w2, pos_vectors)
                pred = float(np.inner(w1_vec, w2_vec))
                actual_sim_list.append(float(actual_sim))
                pred_sim_list.append(pred)

            except KeyError:
                missed += 1

    spearman, _ = st.spearmanr(actual_sim_list, pred_sim_list)
    pearson, _ = st.pearsonr(actual_sim_list, pred_sim_list)

    return spearman, pearson, missed 
開發者ID:dongjun-Lee,項目名稱:kor2vec,代碼行數:25,代碼來源:similarity_test.py

示例6: pearsonr

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def pearsonr(self, log=False, pseudocount=1, clip=None):
    """ Compute target PearsonR vector. """

    pcor = np.zeros(self.num_targets)

    for ti in range(self.num_targets):
      if self.targets_na is not None:
        preds_ti = self.preds[~self.targets_na, ti].astype('float64')
        targets_ti = self.targets[~self.targets_na, ti].astype('float64')
      else:
        preds_ti = self.preds[:, :, ti].flatten().astype('float64')
        targets_ti = self.targets[:, :, ti].flatten().astype('float64')

      if clip is not None:
        preds_ti = np.clip(preds_ti, 0, clip)
        targets_ti = np.clip(targets_ti, 0, clip)

      if log:
        preds_ti = np.log2(preds_ti + pseudocount)
        targets_ti = np.log2(targets_ti + pseudocount)

      pc, _ = stats.pearsonr(targets_ti, preds_ti)
      pcor[ti] = pc

    return pcor 
開發者ID:calico,項目名稱:basenji,代碼行數:27,代碼來源:accuracy.py

示例7: test_tie1

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def test_tie1(self):
        # Data
        x = [1.0, 2.0, 3.0, 4.0]
        y = [1.0, 2.0, 2.0, 3.0]
        # Ranks of the data, with tie-handling.
        xr = [1.0, 2.0, 3.0, 4.0]
        yr = [1.0, 2.5, 2.5, 4.0]
        # Result of spearmanr should be the same as applying
        # pearsonr to the ranks.
        sr = stats.spearmanr(x, y)
        pr = stats.pearsonr(xr, yr)
        assert_almost_equal(sr, pr)


##    W.II.E.  Tabulate X against X, using BIG as a case weight.  The values
##    should appear on the diagonal and the total should be 899999955.
##    If the table cannot hold these values, forget about working with
##    census data.  You can also tabulate HUGE against TINY.  There is no
##    reason a tabulation program should not be able to distinguish
##    different values regardless of their magnitude.

### I need to figure out how to do this one. 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:24,代碼來源:test_stats.py

示例8: __call__

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def __call__(self):
        all_results = np.empty((len(self.systems), len(self.measures)))
        # TODO: parallelise?
        for system, sys_results in zip(self.systems, all_results):
            if self.gold is None:
                result_dict = Evaluate.read_tab_format(utf8_open(system))
            else:
                result_dict = Evaluate(system, self.gold, measures=self.measures, fmt='none')()
            sys_results[...] = [result_dict[measure]['fscore'] for measure in self.measures]

        self.all_results = all_results

        correlations = {}
        scores_by_measure = zip(self.measures, all_results.T)
        for (measure_i, scores_i), (measure_j, scores_j) in _pairs(scores_by_measure):
            correlations[measure_i, measure_j] = {'pearson': stats.pearsonr(scores_i, scores_j),
                                                  'spearman': stats.spearmanr(scores_i, scores_j),
                                                  'kendall': stats.kendalltau(scores_i, scores_j)}

        quartiles = {}
        for measure_i, scores_i in scores_by_measure:
            quartiles[measure_i] = np.percentile(scores_i, [0, 25, 50, 75, 100])

        return self.format(self, {'quartiles': quartiles, 'correlations': correlations}) 
開發者ID:wikilinks,項目名稱:neleval,代碼行數:26,代碼來源:summary.py

示例9: test_compute_correlations_between_versions_default_columns

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def test_compute_correlations_between_versions_default_columns(self):
        df_old = pd.DataFrame({'spkitemid': ['a', 'b', 'c'],
                               'feature1': [1.3, 1.5, 2.1],
                               'feature2': [1.1, 6.2, 2.1],
                               'sc1': [2, 3, 4]})
        df_new = pd.DataFrame({'spkitemid': ['a', 'b', 'c'],
                               'feature1': [-1.3, -1.5, -2.1],
                               'feature2': [1.1, 6.2, 2.1],
                               'sc1': [2, 3, 4]})
        df_cors = Comparer.compute_correlations_between_versions(df_old, df_new)
        assert_almost_equal(df_cors.at['feature1', 'old_new'], -1.0)
        assert_almost_equal(df_cors.at['feature2', 'old_new'], 1.0)
        assert_equal(df_cors.at['feature1', 'human_old'], pearsonr(df_old['feature1'],
                                                                   df_old['sc1'])[0])
        assert_equal(df_cors.at['feature1', 'human_new'], pearsonr(df_new['feature1'],
                                                                   df_new['sc1'])[0])
        assert_equal(df_cors.at['feature1', "N"], 3) 
開發者ID:EducationalTestingService,項目名稱:rsmtool,代碼行數:19,代碼來源:test_comparer.py

示例10: produce_the_kde_plot

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def produce_the_kde_plot(cycles, color, save_name):
    ground_truth_and_suggested = [(eval_code.get_best_qed_from_smiles_bag(elem['ground_truth_product']),
                                   eval_code.get_best_qed_from_smiles_bag(elem['suggested_product']))
                                         for elem in cycles]
    len_out = len(ground_truth_and_suggested)
    ground_truth_and_suggested = [elem for elem in ground_truth_and_suggested if elem[1] != -np.inf]
    len_filter = len(ground_truth_and_suggested)
    num_discarding = len_out - len_filter
    if num_discarding:
        warnings.warn(f"Discarding {num_discarding} our of {len_out} as no successful reconstruction")
    ground_truth_and_suggested = np.array(ground_truth_and_suggested)
    ground_truth_product_qed = ground_truth_and_suggested[:, 0]
    suggested_product_qed = ground_truth_and_suggested[:, 1]

    g = sns.jointplot(x=ground_truth_product_qed, y=suggested_product_qed, kind="kde", color=color,
                      )
    g.set_axis_labels("product's QED", "reconstructed product's QED", fontsize=16)
    rsquare = lambda a, b: stats.pearsonr(ground_truth_product_qed, suggested_product_qed)[0] ** 2
    g = g.annotate(rsquare, template="{stat}: {val:.2f}",
                   stat="$R^2$", loc="upper left", fontsize=12)
    print(f"Rsquare: {stats.pearsonr(ground_truth_product_qed, suggested_product_qed)[0] ** 2}")
    print(f"scipystats: {stats.linregress(ground_truth_product_qed, suggested_product_qed)}")
    plt.tight_layout()
    plt.savefig(f"{save_name}.pdf") 
開發者ID:john-bradshaw,項目名稱:molecule-chef,代碼行數:26,代碼來源:create_retrosynthesis_plots.py

示例11: test_parallel_create_independant_random

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def test_parallel_create_independant_random(self):
        """...Test that random number generator creates independant
        samples in a multithreaded environment
        """

        for thread_type in self.thread_types:
            samples = self._generate_samples_in_parallel(
                parallelization_type=thread_type)

            # We check that we do not have any lines that is identical to the
            # one following
            following_samples_are_different = \
                np.prod(np.linalg.norm(samples[:-1] - samples[1:], axis=1) > 0)
            self.assertEqual(
                following_samples_are_different, 1,
                "Two samples generated in parallel are identical")

            # We check that our generated samples are not correlated
            for (i, sample_i), (j, sample_j) in \
                    itertools.product(enumerate(samples), enumerate(samples)):
                if i != j:
                    corr_coeff = stats.pearsonr(sample_i, sample_j)[0]
                    self.assertLess(np.abs(corr_coeff), 0.1) 
開發者ID:X-DataInitiative,項目名稱:tick,代碼行數:25,代碼來源:random_test.py

示例12: pearson_and_spearman

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def pearson_and_spearman(preds, labels):
        pearson_corr = pearsonr(preds, labels)[0]
        spearman_corr = spearmanr(preds, labels)[0]
        return {
            "pearson": pearson_corr,
            "spearmanr": spearman_corr,
            "corr": (pearson_corr + spearman_corr) / 2,
        } 
開發者ID:microsoft,項目名稱:botbuilder-python,代碼行數:10,代碼來源:bert_util.py

示例13: time_align_correlate

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def time_align_correlate(alignments, time):
    time_dist = euclidean_distances(time, time)

    assert(time_dist.shape == alignments.shape)

    time_dists, scores = [], []
    for i in range(time_dist.shape[0]):
        for j in range(time_dist.shape[1]):
            if i >= j:
                continue
            time_dists.append(time_dist[i, j])
            scores.append(alignments[i, j])

    print('Spearman rho = {}'.format(spearmanr(time_dists, scores)))
    print('Pearson rho = {}'.format(pearsonr(time_dists, scores))) 
開發者ID:brianhie,項目名稱:scanorama,代碼行數:17,代碼來源:time_align.py

示例14: test_corr

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def test_corr(self, datetime_series):
        import scipy.stats as stats

        # full overlap
        tm.assert_almost_equal(datetime_series.corr(datetime_series), 1)

        # partial overlap
        tm.assert_almost_equal(datetime_series[:15].corr(datetime_series[5:]),
                               1)

        assert isna(datetime_series[:15].corr(datetime_series[5:],
                    min_periods=12))

        ts1 = datetime_series[:15].reindex(datetime_series.index)
        ts2 = datetime_series[5:].reindex(datetime_series.index)
        assert isna(ts1.corr(ts2, min_periods=12))

        # No overlap
        assert np.isnan(datetime_series[::2].corr(datetime_series[1::2]))

        # all NA
        cp = datetime_series[:10].copy()
        cp[:] = np.nan
        assert isna(cp.corr(cp))

        A = tm.makeTimeSeries()
        B = tm.makeTimeSeries()
        result = A.corr(B)
        expected, _ = stats.pearsonr(A, B)
        tm.assert_almost_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:32,代碼來源:test_analytics.py

示例15: pearson_r2_score

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import pearsonr [as 別名]
def pearson_r2_score(y, y_pred):
  """Computes Pearson R^2 (square of Pearson correlation)."""
  return pearsonr(y, y_pred)[0]**2 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:5,代碼來源:__init__.py


注:本文中的scipy.stats.pearsonr方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。