本文整理匯總了Python中scipy.stats.norm.rvs方法的典型用法代碼示例。如果您正苦於以下問題:Python norm.rvs方法的具體用法?Python norm.rvs怎麽用?Python norm.rvs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats.norm
的用法示例。
在下文中一共展示了norm.rvs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: weiner_process_fn
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def weiner_process_fn(num_points, delta, x0=0, dt=1):
"""
Generates Weiner process realisation trajectory.
Args:
num_points: int, trajectory length;
delta: float, speed parameter;
x0: float, starting point;
dt: int, time increment;
Returns:
generated data as 1D np.array
"""
x0 = np.asarray(x0)
r = norm.rvs(size=x0.shape + (num_points,), scale=delta * (dt**.5))
return np.cumsum(r, axis=-1) + np.expand_dims(x0, axis=-1)
示例2: impute
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def impute(self, X):
"""Generate imputations using predictions from the fit linear model.
The impute method returns the values for imputation. Missing values
in a given dataset are replaced with the predictions from the least
squares regression line of best fit plus a random draw from the normal
error distribution.
Args:
X (pd.DataFrame): predictors to determine imputed values.
Returns:
np.array: imputed dataset.
"""
# check if fitted then predict with least squares
check_is_fitted(self, "statistics_")
mse = self.statistics_["param"]
preds = self.lm.predict(X)
# add random draw from normal dist w/ mean squared error
# from observed model. This makes lm stochastic
mse_dist = norm.rvs(loc=0, scale=sqrt(mse), size=len(preds))
imp = preds + mse_dist
return imp
示例3: _generatePos
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def _generatePos(self, lenBackground, lenSubstring, additionalInfo):
from scipy.stats import norm
center = (lenBackground-lenSubstring)/2.0
validPos = False
totalTries = 0
while (validPos == False):
sampledPos = int(norm.rvs(loc=center+self.offsetFromCenter,
scale=self.stdInBp))
totalTries += 1
if (sampledPos > 0 and sampledPos < (lenBackground-lenSubstring)):
validPos = True
if (totalTries%10 == 0 and totalTries > 0):
print("Warning: made "+str(totalTries)+" attempts at sampling"
+" a position with lenBackground "+str(lenBackground)
+" and center "+str(center)+" and offset "
+str(self.offsetFromCenter))
return sampledPos
示例4: impute
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def impute(self, feature=None, strategy=None, distribution=None):
if self._matrix is None:
raise ValueError('Must call set_input_matrix() before impute().')
# If user does not specify which feature to impute, impute values
# for all columns in the matrix.
if feature is None:
feature = FeatureMatrixTransform.ALL_FEATURES
# If an imputation strategy is not specified, default to mean.
if strategy is None:
strategy = FeatureMatrixTransform.IMPUTE_STRATEGY_MEAN
# If distribution is not specified, default to norm.
if distribution is None:
distribution = norm.rvs
# TODO sxu: modify other modules to also return stuff
if feature == FeatureMatrixTransform.ALL_FEATURES:
self._impute_all_features(strategy, distribution=distribution)
else:
return self._impute_single_feature(feature, strategy, distribution=distribution)
示例5: ou_process_t_driver_batch_fn
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def ou_process_t_driver_batch_fn(num_points, mu, l, sigma, df, x0, dt=1):
"""
Generates batch of realisation trajectories of Ornshtein-Uhlenbeck process
driven by t-distributed innovations.
Args:
num_points: int, trajectory length
mu: float or array of shape [batch_dim], mean;
l: float or array of shape [batch_dim], lambda, mean reversion rate;
sigma: float or array of shape [batch_dim], volatility;
df: float or array of shape [batch_dim] > 2.0, standart Student-t degrees of freedom param.;
x0: float or array of shape [batch_dim], starting point;
dt: int, time increment;
Returns:
generated data as np.array of shape [batch_dim, num_points]
"""
n = num_points + 1
try:
batch_dim = x0.shape[0]
x = np.zeros([n, batch_dim])
x[0, :] = np.squeeze(x0)
except (AttributeError, IndexError) as e:
batch_dim = None
x = np.zeros([n, 1])
x[0, :] = x0
for i in range(1, n):
driver = np.random.standard_t(df, size=df.size) * ((df - 2) / df) ** .5
# driver = stats.t.rvs(df, loc, scale, size=batch_dim)
# x_vol = df / (df - 2)
# driver = (driver - loc) / scale / x_vol**.5
x[i, :] = x[i - 1, :] * np.exp(-l * dt) + mu * (1 - np.exp(-l * dt)) + \
sigma * ((1 - np.exp(-2 * l * dt)) / (2 * l)) ** .5 * driver
return x[1:, :]
示例6: rnorm
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def rnorm(n,mean,sd):
"""
same functions as rnorm in r
r: rnorm(n, mean=0, sd=1)
py: rvs(loc=0, scale=1, size=1, random_state=None)
"""
return norm.rvs(loc=mean,scale=sd,size=n)
示例7: evolve
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def evolve(self):
X = self.state
dw = norm.rvs(scale=self.dt, size=self.processes)
dx = self.theta * (self.mu - X) * self.dt + self.sigma * dw
self.state = X + dx
return self.state
開發者ID:knowledgedefinednetworking,項目名稱:a-deep-rl-approach-for-sdn-routing-optimization,代碼行數:8,代碼來源:OU.py
示例8: test_aic_fail_no_posterior
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def test_aic_fail_no_posterior():
d = norm.rvs(size=1000)
c = ChainConsumer()
c.add_chain(d, num_eff_data_points=1000, num_free_params=1)
aics = c.comparison.aic()
assert len(aics) == 1
assert aics[0] is None
示例9: test_aic_fail_no_data_points
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def test_aic_fail_no_data_points():
d = norm.rvs(size=1000)
p = norm.logpdf(d)
c = ChainConsumer()
c.add_chain(d, posterior=p, num_free_params=1)
aics = c.comparison.aic()
assert len(aics) == 1
assert aics[0] is None
示例10: test_aic_fail_no_num_params
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def test_aic_fail_no_num_params():
d = norm.rvs(size=1000)
p = norm.logpdf(d)
c = ChainConsumer()
c.add_chain(d, posterior=p, num_eff_data_points=1000)
aics = c.comparison.aic()
assert len(aics) == 1
assert aics[0] is None
示例11: test_aic_0
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def test_aic_0():
d = norm.rvs(size=1000)
p = norm.logpdf(d)
c = ChainConsumer()
c.add_chain(d, posterior=p, num_free_params=1, num_eff_data_points=1000)
aics = c.comparison.aic()
assert len(aics) == 1
assert aics[0] == 0
示例12: test_aic_posterior_dependence
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def test_aic_posterior_dependence():
d = norm.rvs(size=1000)
p = norm.logpdf(d)
p2 = norm.logpdf(d, scale=2)
c = ChainConsumer()
c.add_chain(d, posterior=p, num_free_params=1, num_eff_data_points=1000)
c.add_chain(d, posterior=p2, num_free_params=1, num_eff_data_points=1000)
aics = c.comparison.aic()
assert len(aics) == 2
assert aics[0] == 0
expected = 2 * np.log(2)
assert np.isclose(aics[1], expected, atol=1e-3)
示例13: test_aic_data_dependence
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def test_aic_data_dependence():
d = norm.rvs(size=1000)
p = norm.logpdf(d)
c = ChainConsumer()
c.add_chain(d, posterior=p, num_free_params=1, num_eff_data_points=1000)
c.add_chain(d, posterior=p, num_free_params=1, num_eff_data_points=500)
aics = c.comparison.aic()
assert len(aics) == 2
assert aics[0] == 0
expected = (2.0 * 1 * 2 / (500 - 1 - 1)) - (2.0 * 1 * 2 / (1000 - 1 - 1))
assert np.isclose(aics[1], expected, atol=1e-3)
示例14: test_bic_fail_no_posterior
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def test_bic_fail_no_posterior():
d = norm.rvs(size=1000)
c = ChainConsumer()
c.add_chain(d, num_eff_data_points=1000, num_free_params=1)
bics = c.comparison.bic()
assert len(bics) == 1
assert bics[0] is None
示例15: test_bic_fail_no_data_points
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import rvs [as 別名]
def test_bic_fail_no_data_points():
d = norm.rvs(size=1000)
p = norm.logpdf(d)
c = ChainConsumer()
c.add_chain(d, posterior=p, num_free_params=1)
bics = c.comparison.bic()
assert len(bics) == 1
assert bics[0] is None