本文整理匯總了Python中scipy.stats.norm.ppf方法的典型用法代碼示例。如果您正苦於以下問題:Python norm.ppf方法的具體用法?Python norm.ppf怎麽用?Python norm.ppf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats.norm
的用法示例。
在下文中一共展示了norm.ppf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _t_value
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def _t_value(self):
r"""
Returns the critical t-statistic given the input alpha-level (defaults to 0.05).
Returns
-------
tval : float
The critical t-value for using in computing the Least Significant Difference.
Notes
-----
Scipy's :code:`t.ppf` method is used to compute the critical t-value.
"""
tval = t.ppf(1 - self.alpha / 2, self.n - self.k)
return tval
示例2: test_calc_bias_correction_bca
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def test_calc_bias_correction_bca(self):
# There are 100 bootstrap replicates, already in ascending order for
# each column. If we take row 51 to be the mle, then 50% of the
# replicates are less than the mle, and we should have bias = 0.
expected_result = np.zeros(self.mle_params.size)
# Alias the function to be tested.
func = bc.calc_bias_correction_bca
# Perform the desired test
func_result = func(self.bootstrap_replicates, self.mle_params)
self.assertIsInstance(func_result, np.ndarray)
self.assertEqual(func_result.shape, expected_result.shape)
npt.assert_allclose(func_result, expected_result)
# Create a fake mle that should be higher than 95% of the results
fake_mle = self.bootstrap_replicates[95]
expected_result_2 = norm.ppf(0.95) * np.ones(self.mle_params.size)
func_result_2 = func(self.bootstrap_replicates, fake_mle)
self.assertIsInstance(func_result_2, np.ndarray)
self.assertEqual(func_result_2.shape, expected_result_2.shape)
npt.assert_allclose(func_result_2, expected_result_2)
return None
示例3: update
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def update(self, model):
self.model = model
self.sn2 = self.model.get_noise()
# Sample representer points
self.sampling_acquisition.update(model)
self.sample_representer_points()
# Omega values which are needed for the innovations
# by sampling from a uniform grid
self.W = norm.ppf(np.linspace(1. / (self.Np + 1),
1 - 1. / (self.Np + 1),
self.Np))[np.newaxis, :]
# Compute current posterior belief at the representer points
self.Mb, self.Vb = self.model.predict(self.zb, full_cov=True)
self.pmin = mc_part.joint_pmin(self.Mb, self.Vb, self.Nf)
self.logP = np.log(self.pmin)
示例4: testSecurityNormInvValueHolder
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def testSecurityNormInvValueHolder(self):
mm1 = SecurityNormInvValueHolder('open')
mm2 = SecurityNormInvValueHolder('open', fullAcc=True)
for i in range(len(self.aapl['close'])):
data = dict(aapl=dict(open=norm.cdf(self.aapl['open'][i])),
ibm=dict(open=norm.cdf(self.ibm['open'][i])))
mm1.push(data)
mm2.push(data)
value1 = mm1.value
value2 = mm2.value
for name in value1.index():
expected = norm.ppf(data[name]['open'])
calculated = value1[name]
self.assertAlmostEqual(expected, calculated, 6, 'at index {0}\n'
'expected: {1:.12f}\n'
'calculat: {2:.12f}'
.format(i, expected, calculated))
calculated = value2[name]
self.assertAlmostEqual(expected, calculated, 12, 'at index {0}\n'
'expected: {1:.12f}\n'
'calculat: {2:.12f}'
.format(i, expected, calculated))
示例5: liptak
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def liptak(pvalues):
r"""
Apply Liptak's combining function
.. math:: \sum_i \Phi^{-1}(1-p_i)
where $\Phi^{-1}$ is the inverse CDF of the standard normal distribution.
Parameters
----------
pvalues : array_like
Array of p-values to combine
Returns
-------
float
Liptak's combined test statistic
"""
return np.sum(norm.ppf(1 - pvalues))
示例6: predictions
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def predictions(self, image, forward_batch_size=32):
from scipy.stats import norm
image, _ = self._process_input(image)
image_batch = np.vstack([[image]] * self._iterations)
noise = np.random.normal(scale=self._std, size=image_batch.shape).astype(np.float32)
image_batch += noise
predictions = self._model.batch_predictions(image_batch)
logits = np.argmax(predictions, axis=1)
one_hot = np.zeros([self._iterations, self._num_classes])
logits_one_hot = np.eye(self._num_classes)[logits]
one_hot += logits_one_hot
one_hot = np.sum(one_hot, axis=0)
ranks = sorted(one_hot / np.sum(one_hot))[::-1]
qi = ranks[0] - 1e-9
qj = ranks[1] + 1e-9
bound = self._std / 2. * (norm.ppf(qi) - norm.ppf(qj))
return np.argmax(one_hot), bound
示例7: std_mad
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def std_mad(x):
"""Robust estimation of the standard deviation, based on the Corrected Median
Absolute Deviation (MAD) of x.
This computes the MAD of x, and applies the Gaussian distribution
correction, making it a consistent estimator of the standard-deviation
(when the sample looks Gaussian with outliers).
Parameters
----------
x : `np.ndarray`
Input vector
Returns
-------
output : `float`
A robust estimation of the standard deviation
"""
from scipy.stats import norm
correction = 1 / norm.ppf(3 / 4)
return correction * np.median(np.abs(x - np.median(x)))
示例8: bias_corrected_ci
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def bias_corrected_ci(estimate, samples, conf=95):
"""
Return the bias-corrected bootstrap confidence interval for an estimate
:param estimate: Numerical estimate in the original sample
:param samples: Nx1 array of bootstrapped estimates
:param conf: Level of the desired confidence interval
:return: Bias-corrected bootstrapped LLCI and ULCI for the estimate.
"""
# noinspection PyUnresolvedReferences
ptilde = ((samples < estimate) * 1).mean()
Z = norm.ppf(ptilde)
Zci = z_score(conf)
Zlow, Zhigh = -Zci + 2 * Z, Zci + 2 * Z
plow, phigh = norm._cdf(Zlow), norm._cdf(Zhigh)
llci = np.percentile(samples, plow * 100, interpolation="lower")
ulci = np.percentile(samples, phigh * 100, interpolation="higher")
return llci, ulci
示例9: _fisher_confint
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def _fisher_confint(self, alpha: float, observed: bool = False) -> List[float]:
"""Compute the Fisher information confidence interval for the MLE of the previous run.
Args:
alpha: Specifies the (1 - alpha) confidence level (0 < alpha < 1).
observed: If True, the observed Fisher information is used to construct the
confidence interval, otherwise the expected Fisher information.
Returns:
The Fisher information confidence interval.
"""
shots = self._ret['shots']
mle = self._ret['ml_value']
# approximate the standard deviation of the MLE and construct the confidence interval
std = np.sqrt(shots * self._compute_fisher_information(observed))
ci = mle + norm.ppf(1 - alpha / 2) / std * np.array([-1, 1])
# transform the confidence interval from [0, 1] to the target interval
return [self.a_factory.value_to_estimation(bound) for bound in ci]
示例10: _init_model
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def _init_model(self, C, eta):
"""
Initialize model.
"""
logger.info("init model starts")
self.model["mu"] = defaultdict() # model parameter mean
self.model["S"] = defaultdict() # model parameter covariance
self.model["C"] = C # PA parameter
self.model["eta"] = eta # confidence parameter
self.model["phi"] = norm.ppf(norm.cdf(eta)) # inverse of cdf(eta)
self.model["phi_2"] = np.power(self.model["phi"], 2)
self.model["psi"] = 1 + self.model["phi_2"] / 2
self.model["zeta"] = 1 + self.model["phi_2"]
logger.info("init model finished")
pass
開發者ID:kzky,項目名稱:python-online-machine-learning-library,代碼行數:18,代碼來源:multiclass_soft_confidence_weighted_2_diag.py
示例11: prewarp
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def prewarp(self, xx):
"""Extra work needed to get variables into the Gaussian space
representation."""
xxw = {}
for arg_name, vv in xx.items():
assert np.isscalar(vv)
space = self.space[arg_name]
if space is not None:
# Warp so we think it is apriori uniform in [a, b]
vv = space.warp(vv)
assert vv.size == 1
# Now make uniform on [0, 1], also unpack warped to scalar
(lb, ub), = space.get_bounds()
vv = linear_rescale(vv.item(), lb, ub, 0, 1)
# Now make std Gaussian apriori
vv = norm.ppf(vv)
assert np.isscalar(vv)
xxw[arg_name] = vv
return xxw
示例12: _confidence_interval_by_alpha
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def _confidence_interval_by_alpha(cls, p_hat, n, alpha, method='wald'):
"""Compute confidence interval for estimate of Bernoulli parameter p.
Args:
p_hat: maximum likelihood estimate of p
n: samples observed
alpha: the probability that the true p falls outside the CI
Returns:
left, right
"""
prob = 1 - 0.5 * alpha
z = norm.ppf(prob)
compute_ci = cls._confidence_interval_by_z_wald if method == 'wald' else cls._confidence_interval_by_z_wilson
return compute_ci(p_hat, n, z)
示例13: test_conditional_value_at_risk_mc
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def test_conditional_value_at_risk_mc(self):
for mu, sigma, alpha in [(1, 1, 0.05), (0.4, 0.1, 0.02), (0.1, 2, 0.01)]:
# prepare estimator dummy
mu1 = np.array([mu])
sigma1 = np.identity(n=1) * sigma
est = GaussianDummy(mean=mu1, cov=sigma1**2, ndim_x=1, ndim_y=1, has_pdf=True)
est.fit(None, None)
CVaR_true = mu - sigma/alpha * norm.pdf(norm.ppf(alpha))
CVaR_est = est.conditional_value_at_risk(x_cond=np.array([[0],[1]]), alpha=alpha)
print("CVaR True (%.2f, %.2f):"%(mu, sigma), CVaR_true)
print("CVaR_est (%.2f, %.2f):"%(mu, sigma), CVaR_est)
print("VaR (%.2f, %.2f):"%(mu, sigma), est.value_at_risk(x_cond=np.array([[0],[1]]), alpha=alpha))
self.assertAlmostEqual(CVaR_est[0], CVaR_true, places=2)
self.assertAlmostEqual(CVaR_est[1], CVaR_true, places=2)
示例14: value_at_risk
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def value_at_risk(self, x_cond, alpha=0.01, **kwargs):
""" Computes the Value-at-Risk (VaR) of the fitted distribution. Only if ndim_y = 1
Args:
x_cond: different x values to condition on - numpy array of shape (n_values, ndim_x)
alpha: quantile percentage of the distribution
Returns:
VaR values for each x to condition on - numpy array of shape (n_values)
"""
assert self.ndim_y == 1, "Value at Risk can only be computed when ndim_y = 1"
assert x_cond.ndim == 2
VaR = norm.ppf(alpha, loc=x_cond, scale=self._std(x_cond))[:,0]
assert VaR.shape == (x_cond.shape[0],)
return VaR
示例15: value_at_risk
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import ppf [as 別名]
def value_at_risk(self, x_cond, alpha=0.01, **kwargs):
""" Computes the Value-at-Risk (VaR) of the fitted distribution. Only if ndim_y = 1
Args:
x_cond: different x values to condition on - numpy array of shape (n_values, ndim_x)
alpha: quantile percentage of the distribution
Returns:
VaR values for each x to condition on - numpy array of shape (n_values)
"""
assert self.ndim_y == 1, "Value at Risk can only be computed when ndim_y = 1"
assert x_cond.ndim == 2
VaR = norm.ppf(alpha, loc=self._mean(x_cond), scale=self._std(x_cond))[:,0]
assert VaR.shape == (x_cond.shape[0],)
return VaR