當前位置: 首頁>>代碼示例>>Python>>正文


Python norm.isf方法代碼示例

本文整理匯總了Python中scipy.stats.norm.isf方法的典型用法代碼示例。如果您正苦於以下問題:Python norm.isf方法的具體用法?Python norm.isf怎麽用?Python norm.isf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats.norm的用法示例。


在下文中一共展示了norm.isf方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: z_score

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import isf [as 別名]
def z_score(pvalue):
    """ Return the z-score corresponding to a given p-value.
    """
    pvalue = np.minimum(np.maximum(pvalue, 1.e-300), 1. - 1.e-16)
    return norm.isf(pvalue) 
開發者ID:nilearn,項目名稱:nistats,代碼行數:7,代碼來源:utils.py

示例2: test_fdr

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import isf [as 別名]
def test_fdr():
    n = 100
    x = np.linspace(.5 / n, 1. - .5 / n, n)
    x[:10] = .0005
    x = norm.isf(x)
    np.random.shuffle(x)
    assert_almost_equal(fdr_threshold(x, .1), norm.isf(.0005))
    assert fdr_threshold(x, .001) == np.infty
    with pytest.raises(ValueError):
        fdr_threshold(x, -.1)
    with pytest.raises(ValueError):
        fdr_threshold(x, 1.5) 
開發者ID:nilearn,項目名稱:nistats,代碼行數:14,代碼來源:test_thresholding.py

示例3: test_z_score

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import isf [as 別名]
def test_z_score():
    p = np.random.rand(10)
    assert_array_almost_equal(norm.sf(z_score(p)), p)
    # check the numerical precision
    for p in [1.e-250, 1 - 1.e-16]:
        assert_array_almost_equal(z_score(p), norm.isf(p))
    assert_array_almost_equal(z_score(np.float32(1.e-100)), norm.isf(1.e-300)) 
開發者ID:nilearn,項目名稱:nistats,代碼行數:9,代碼來源:test_utils.py

示例4: h2_obs_to_liab

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import isf [as 別名]
def h2_obs_to_liab(h2_obs, P, K):
    '''
    Converts heritability on the observed scale in an ascertained sample to heritability
    on the liability scale in the population.

    Parameters
    ----------
    h2_obs : float
        Heritability on the observed scale in an ascertained sample.
    P : float in (0,1)
        Prevalence of the phenotype in the sample.
    K : float in (0,1)
        Prevalence of the phenotype in the population.

    Returns
    -------
    h2_liab : float
        Heritability of liability in the population.

    '''
    if np.isnan(P) and np.isnan(K):
        return h2_obs
    if K <= 0 or K >= 1:
        raise ValueError('K must be in the range (0,1)')
    if P <= 0 or P >= 1:
        raise ValueError('P must be in the range (0,1)')

    thresh = norm.isf(K)
    conversion_factor = K ** 2 * \
        (1 - K) ** 2 / (P * (1 - P) * norm.pdf(thresh) ** 2)
    return h2_obs * conversion_factor 
開發者ID:JonJala,項目名稱:mtag,代碼行數:33,代碼來源:regressions.py

示例5: draw_two_gauss

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import isf [as 別名]
def draw_two_gauss(ix=0,extrema=500,std=50,h1=0,h2=0,gap=50,
                    alpha=0.15865525393145707):
    im = Image.new("RGB", (512,512), "black")
    draw = ImageDraw.Draw(im, 'RGBA')
    fn = lambda x:300-norm.pdf(x-250,0,std)*7000
    draw_curve(fn,draw)
    fn2 = lambda x:300-norm.pdf(x-250,gap,std)*7000
    draw_curve(fn2,draw,rgba=(138,43,226))
    #draw.line((250,0,250,512),fill=(0,120,230),width=1)
    #draw.line((250,0,250,512),fill=(255,255,0),width=1)
    delta = norm.isf(alpha,0,std)
    x1 = 250+delta
    draw.line((x1,0,x1,512),fill=(255,20,147,150),width=1)
    y1 = fn(x1)
    pts = [(x1,y1),(x1,300),(extrema,fn(extrema))]
    for xx in np.arange(extrema-1,x1,-1):
        yx = fn(xx)
        pts.append((xx,yx))
    draw.polygon(pts,(255,255,0,100))
    y2=fn2(x1)
    pts = [(x1,y2),(x1,300),(180,fn2(180))]
    for xx in np.arange(179+1,x1,1):
        yx = fn2(xx)
        pts.append((xx,yx))
    draw.polygon(pts,(138,43,226,100))
    draw_trtmt_hist(draw,h1=h1,h2=h2)
    draw_alpha_beta_curve(draw,alpha,std=std,effect=gap)
    im.save(basedir + 'im' + str(ix) + '.png') 
開發者ID:ryu577,項目名稱:pyray,代碼行數:30,代碼來源:hypothesis_testing.py

示例6: betafn

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import isf [as 別名]
def betafn(alpha,effect,std):
    return norm.cdf(-effect+norm.isf(alpha,0,std),0,std) 
開發者ID:ryu577,項目名稱:pyray,代碼行數:4,代碼來源:hypothesis_testing.py

示例7: extreme_values

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import isf [as 別名]
def extreme_values(weighted_residuals, confidence_interval):
    '''
    This function uses extreme value theory to calculate the number of 
    standard deviations away from the mean at which we should expect to bracket
    *all* of our n data points at a certain confidence level. 
    
    It then uses that value to identify which (if any) of the data points 
    lie outside that region, and calculates the corresponding probabilities 
    of finding a data point at least that many standard deviations away.  


    Parameters
    ----------

    weighted_residuals : array of floats
        Array of residuals weighted by the square root of their
        variances wr_i = r_i/sqrt(var_i)

    confidence_interval : float
        Probability at which all the weighted residuals lie 
        within the confidence bounds

    Returns
    -------
    confidence_bound : float
        Number of standard deviations at which we should expect to encompass all 
        data at the user-defined confidence interval.

    indices : array of floats
        Indices of weighted residuals exceeding the confidence_interval 
        defined by the user

    probabilities : array of floats
        The probabilities that the extreme data point of the distribution lies
        further from the mean than the observed position wr_i for each i in
        the "indices" output array.
    '''

    n=len(weighted_residuals)
    mean = norm.isf(1./n)
    scale = 0.8/np.power(np.log(n), 1./2.) # good approximation for > 10 data points
    c = 0.33/np.power(np.log(n), 3./4.)  # good approximation for > 10 data points

    # We now need a 1-tailed probability from the given confidence_interval
    # p_total = 1. - confidence_interval = p_upper + p_lower - p_upper*p_lower
    # p_total = 1. - confidence_interval = 2p - p^2, therefore:
    p = 1. - np.sqrt(confidence_interval)
    confidence_bound = genextreme.isf(p, c, loc=mean, scale=scale)

    indices = [i for i, r in enumerate(weighted_residuals) if np.abs(r) > confidence_bound]
    probabilities = 1. - np.power(genextreme.sf(np.abs(weighted_residuals[indices]), c, loc=mean, scale=scale) - 1., 2.) # Convert back to 2-tailed probabilities
    
    return confidence_bound, indices, probabilities 
開發者ID:geodynamics,項目名稱:burnman,代碼行數:55,代碼來源:nonlinear_fitting.py

示例8: get_score_df

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import isf [as 別名]
def get_score_df(self, correction_method=None):
        '''
        Computes Mann Whitney corrected p, z-values.  Falls back to normal approximation when numerical limits are reached.

        :param correction_method: str or None, correction method from statsmodels.stats.multitest.multipletests
         'fdr_bh' is recommended.
        :return: pd.DataFrame
        '''
        X = self._get_X().astype(np.float64)
        X = X / X.sum(axis=1)
        cat_X, ncat_X = self._get_cat_and_ncat(X)

        def normal_apx(u, x, y):
            # from https://stats.stackexchange.com/questions/116315/problem-with-mann-whitney-u-test-in-scipy
            m_u = len(x) * len(y) / 2
            sigma_u = np.sqrt(len(x) * len(y) * (len(x) + len(y) + 1) / 12)
            z = (u - m_u) / sigma_u
            return 2*norm.cdf(z)
        scores = []
        for i in range(cat_X.shape[1]):
            cat_list = cat_X.T[i].A1
            ncat_list = ncat_X.T[i].A1
            try:
                if cat_list.mean() > ncat_list.mean():
                    mw = mannwhitneyu(cat_list, ncat_list, alternative='greater')
                    if mw.pvalue in (0, 1):
                        mw.pvalue = normal_apx(mw.staistic, cat_list, ncat_list)

                    scores.append({'mwu': mw.statistic, 'mwu_p': mw.pvalue, 'mwu_z': norm.isf(float(mw.pvalue)), 'valid':True})

                else:
                    mw = mannwhitneyu(ncat_list, cat_list, alternative='greater')
                    if mw.pvalue in (0, 1):
                        mw.pvalue = normal_apx(mw.staistic, ncat_list, cat_list)

                    scores.append({'mwu': -mw.statistic, 'mwu_p': 1 - mw.pvalue, 'mwu_z': 1. - norm.isf(float(mw.pvalue)), 'valid':True})
            except:
                scores.append({'mwu': 0, 'mwu_p': 0, 'mwu_z': 0, 'valid':False})

        score_df = pd.DataFrame(scores, index=self.corpus_.get_terms()).fillna(0)
        if correction_method is not None:
            from statsmodels.stats.multitest import multipletests
            for method in ['mwu']:
                valid_pvals = score_df[score_df.valid].mwu_p
                valid_pvals_abs = np.min([valid_pvals, 1-valid_pvals], axis=0)
                valid_pvals_abs_corr = multipletests(valid_pvals_abs, method=correction_method)[1]
                score_df[method + '_p_corr'] = 0.5
                valid_pvals_abs_corr[valid_pvals > 0.5] = 1. - valid_pvals_abs_corr[valid_pvals > 0.5]
                valid_pvals_abs_corr[valid_pvals < 0.5] = valid_pvals_abs_corr[valid_pvals < 0.5]
                score_df.loc[score_df.valid, method + '_p_corr'] = valid_pvals_abs_corr
                score_df[method + '_z'] = -norm.ppf(score_df[method + '_p_corr'])
        return score_df 
開發者ID:JasonKessler,項目名稱:scattertext,代碼行數:54,代碼來源:MannWhitneyU.py


注:本文中的scipy.stats.norm.isf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。