當前位置: 首頁>>代碼示例>>Python>>正文


Python stats.norm方法代碼示例

本文整理匯總了Python中scipy.stats.norm方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.norm方法的具體用法?Python stats.norm怎麽用?Python stats.norm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats的用法示例。


在下文中一共展示了stats.norm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def __init__(self,
                 nbases,
                 Xdim,
                 mean=Parameter(norm_dist(), Bound()),
                 lenscale=Parameter(gamma(1.), Positive()),
                 regularizer=None,
                 random_state=None
                 ):
        """See this class's docstring."""
        self.random_state = random_state  # for repr
        self._random = check_random_state(random_state)
        self._init_dims(nbases, Xdim)
        self._params = [self._init_param(mean),
                        self._init_param(lenscale)]
        self._init_matrices()
        super(_LengthScaleBasis, self).__init__(regularizer) 
開發者ID:NICTA,項目名稱:revrand,代碼行數:18,代碼來源:basis_functions.py

示例2: conf_int

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def conf_int(self, alpha=.05):
        """
        Returns the confidence intervals of the marginal effects

        Parameters
        ----------
        alpha : float
            Number between 0 and 1. The confidence intervals have the
            probability 1-alpha.

        Returns
        -------
        conf_int : ndarray
            An array with lower, upper confidence intervals for the marginal
            effects.
        """
        _check_at_is_all(self.margeff_options)
        me_se = self.margeff_se
        q = stats.norm.ppf(1 - alpha / 2)
        lower = self.margeff - q * me_se
        upper = self.margeff + q * me_se
        return np.asarray(lzip(lower, upper)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:generalized_estimating_equations.py

示例3: test_mixture_rvs_fixed

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def test_mixture_rvs_fixed(self):
        mix = MixtureDistribution()
        np.random.seed(1234)
        res = mix.rvs([.15,.85], 50, dist=[stats.norm, stats.norm], kwargs =
                (dict(loc=1,scale=.5),dict(loc=-1,scale=.5)))
        npt.assert_almost_equal(
                res,
                np.array([-0.5794956 , -1.72290504, -1.70098664, -1.0504591 ,
                            -1.27412122,-1.07230975, -0.82298983, -1.01775651,
                            -0.71713085,-0.2271706 ,-1.48711817, -1.03517244,
                            -0.84601557, -1.10424938, -0.48309963,-2.20022682,
                            0.01530181,  1.1238961 , -1.57131564, -0.89405831,
                            -0.64763969, -1.39271761,  0.55142161, -0.76897013,
                            -0.64788589,-0.73824602, -1.46312716,  0.00392148,
                            -0.88651873, -1.57632955,-0.68401028, -0.98024366,
                            -0.76780384,  0.93160258,-2.78175833,-0.33944719,
                            -0.92368472, -0.91773523, -1.21504785, -0.61631563,
                            1.0091446 , -0.50754008,  1.37770699, -0.86458208,
                            -0.3040069 ,-0.96007884,  1.10763429, -1.19998229,
                            -1.51392528, -1.29235911])) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:22,代碼來源:test_mixture.py

示例4: test_compare

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def test_compare(self):
        xx = self.res1.support
        kde_vals = [self.res1.evaluate(xi) for xi in xx]
        kde_vals = np.squeeze(kde_vals)  #kde_vals is a "column_list"
        mask_valid = np.isfinite(kde_vals)
        # TODO: nans at the boundaries
        kde_vals[~mask_valid] = 0
        npt.assert_almost_equal(self.res1.density, kde_vals,
                                self.decimal_density)

        # regression test, not compared to another package
        nobs = len(self.res1.endog)
        kern = self.res1.kernel
        v = kern.density_var(kde_vals, nobs)
        v_direct = kde_vals * kern.L2Norm / kern.h / nobs
        npt.assert_allclose(v, v_direct, rtol=1e-10)

        ci = kern.density_confint(kde_vals, nobs)
        crit = 1.9599639845400545 #stats.norm.isf(0.05 / 2)
        hw = kde_vals - ci[:, 0]
        npt.assert_allclose(hw, crit * np.sqrt(v), rtol=1e-10)
        hw = ci[:, 1] - kde_vals
        npt.assert_allclose(hw, crit * np.sqrt(v), rtol=1e-10) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:25,代碼來源:test_kde.py

示例5: __init__

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def __init__(self, predicted_mean, var_pred_mean, var_resid,
                 df=None, dist=None, row_labels=None):
        self.predicted_mean = predicted_mean
        self.var_pred_mean = var_pred_mean
        self.df = df
        self.var_resid = var_resid
        self.row_labels = row_labels

        if dist is None or dist == 'norm':
            self.dist = stats.norm
            self.dist_args = ()
        elif dist == 't':
            self.dist = stats.t
            self.dist_args = (self.df,)
        else:
            self.dist = dist
            self.dist_args = () 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:_prediction.py

示例6: test_qqplot

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def test_qqplot(self):
        """Test qqplot()"""
        np.random.seed(123)
        x = np.random.normal(size=50)
        x_ln = np.random.lognormal(size=50)
        x_exp = np.random.exponential(size=50)
        ax = qqplot(x, dist='norm')
        assert isinstance(ax, matplotlib.axes.Axes)
        _, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4))
        qqplot(x_exp, dist='expon', ax=ax2)
        mean, std = 0, 0.8
        qqplot(x, dist=stats.norm, sparams=(mean, std), confidence=False)
        # For lognormal distribution, the shape parameter must be specified
        ax = qqplot(x_ln, dist='lognorm', sparams=(1))
        assert isinstance(ax, matplotlib.axes.Axes)
        # Error: required parameters are not specified
        with pytest.raises(ValueError):
            qqplot(x_ln, dist='lognorm', sparams=())
        plt.close('all') 
開發者ID:raphaelvallat,項目名稱:pingouin,代碼行數:21,代碼來源:test_plotting.py

示例7: test_compute_perfect_model_da1d_not_nan_crpss_quadratic_kwargs

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def test_compute_perfect_model_da1d_not_nan_crpss_quadratic_kwargs(
    PM_da_initialized_1d, PM_da_control_1d
):
    """
    Checks that there are no NaNs on perfect model metrics of 1D time series.
    """
    actual = (
        compute_perfect_model(
            PM_da_initialized_1d.isel(lead=[0]),
            PM_da_control_1d,
            comparison='m2c',
            metric='crpss',
            gaussian=False,
            dim='member',
            tol=1e-6,
            xmin=None,
            xmax=None,
            cdf_or_dist=norm,
        )
        .isnull()
        .any()
    )
    assert not actual 
開發者ID:bradyrx,項目名稱:climpred,代碼行數:25,代碼來源:test_probabilistic.py

示例8: setUp_configure

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def setUp_configure(self):
        from scipy import stats
        self.dist = distributions.Normal
        self.scipy_dist = stats.norm

        self.test_targets = set([
            'batch_shape', 'cdf', 'entropy', 'event_shape', 'icdf', 'log_cdf',
            'log_prob', 'log_survival', 'mean', 'prob', 'sample', 'stddev',
            'support', 'survival', 'variance'])

        loc = utils.force_array(
            numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32))
        if self.log_scale_option:
            log_scale = utils.force_array(
                numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32))
            scale = numpy.exp(log_scale)
            self.params = {'loc': loc, 'log_scale': log_scale}
            self.scipy_params = {'loc': loc, 'scale': scale}
        else:
            scale = utils.force_array(numpy.exp(
                numpy.random.uniform(-1, 1, self.shape)).astype(numpy.float32))
            self.params = {'loc': loc, 'scale': scale}
            self.scipy_params = {'loc': loc, 'scale': scale} 
開發者ID:chainer,項目名稱:chainer,代碼行數:25,代碼來源:test_normal.py

示例9: test_norm_logcdf

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def test_norm_logcdf():
    # Test precision of the logcdf of the normal distribution.
    # This precision was enhanced in ticket 1614.
    x = -np.asarray(list(range(0, 120, 4)))
    # Values from R
    expected = [-0.69314718, -10.36010149, -35.01343716, -75.41067300,
                -131.69539607, -203.91715537, -292.09872100, -396.25241451,
                -516.38564863, -652.50322759, -804.60844201, -972.70364403,
                -1156.79057310, -1356.87055173, -1572.94460885, -1805.01356068,
                -2053.07806561, -2317.13866238, -2597.19579746, -2893.24984493,
                -3205.30112136, -3533.34989701, -3877.39640444, -4237.44084522,
                -4613.48339520, -5005.52420869, -5413.56342187, -5837.60115548,
                -6277.63751711, -6733.67260303]

    assert_allclose(stats.norm().logcdf(x), expected, atol=1e-8)

    # also test the complex-valued code path
    assert_allclose(stats.norm().logcdf(x + 1e-14j).real, expected, atol=1e-8)

    # test the accuracy: d(logcdf)/dx = pdf / cdf \equiv exp(logpdf - logcdf)
    deriv = (stats.norm.logcdf(x + 1e-10j)/1e-10).imag
    deriv_expected = np.exp(stats.norm.logpdf(x) - stats.norm.logcdf(x))
    assert_allclose(deriv, deriv_expected, atol=1e-10) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_distributions.py

示例10: test_pdf

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def test_pdf(self):
        values = np.array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
                           5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5])
        pdf_values = np.asarray([0.0/25.0, 0.0/25.0, 1.0/25.0, 1.0/25.0,
                                 2.0/25.0, 2.0/25.0, 3.0/25.0, 3.0/25.0,
                                 4.0/25.0, 4.0/25.0, 5.0/25.0, 5.0/25.0,
                                 4.0/25.0, 4.0/25.0, 3.0/25.0, 3.0/25.0,
                                 3.0/25.0, 3.0/25.0, 0.0/25.0, 0.0/25.0])
        assert_allclose(self.template.pdf(values), pdf_values)

        # Test explicitly the corner cases:
        # As stated above the pdf in the bin [8,9) is greater than
        # one would naively expect because np.histogram putted the 9
        # into the [8,9) bin.
        assert_almost_equal(self.template.pdf(8.0), 3.0/25.0)
        assert_almost_equal(self.template.pdf(8.5), 3.0/25.0)
        # 9 is outside our defined bins [8,9) hence the pdf is already 0
        # for a continuous distribution this is fine, because a single value
        # does not have a finite probability!
        assert_almost_equal(self.template.pdf(9.0), 0.0/25.0)
        assert_almost_equal(self.template.pdf(10.0), 0.0/25.0)

        x = np.linspace(-2, 2, 10)
        assert_allclose(self.norm_template.pdf(x),
                        stats.norm.pdf(x, loc=1.0, scale=2.5), rtol=0.1) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:27,代碼來源:test_distributions.py

示例11: test_cdf_ppf

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def test_cdf_ppf(self):
        values = np.array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
                           5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5])
        cdf_values = np.asarray([0.0/25.0, 0.0/25.0, 0.0/25.0, 0.5/25.0,
                                 1.0/25.0, 2.0/25.0, 3.0/25.0, 4.5/25.0,
                                 6.0/25.0, 8.0/25.0, 10.0/25.0, 12.5/25.0,
                                 15.0/25.0, 17.0/25.0, 19.0/25.0, 20.5/25.0,
                                 22.0/25.0, 23.5/25.0, 25.0/25.0, 25.0/25.0])
        assert_allclose(self.template.cdf(values), cdf_values)
        # First three and last two values in cdf_value are not unique
        assert_allclose(self.template.ppf(cdf_values[2:-1]), values[2:-1])

        # Test of cdf and ppf are inverse functions
        x = np.linspace(1.0, 9.0, 100)
        assert_allclose(self.template.ppf(self.template.cdf(x)), x)
        x = np.linspace(0.0, 1.0, 100)
        assert_allclose(self.template.cdf(self.template.ppf(x)), x)

        x = np.linspace(-2, 2, 10)
        assert_allclose(self.norm_template.cdf(x),
                        stats.norm.cdf(x, loc=1.0, scale=2.5), rtol=0.1) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:23,代碼來源:test_distributions.py

示例12: step

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def step(self, actions, **kwargs):
        reward = stats.norm.pdf(actions, loc=self.loc, scale=self.scale)[0]
        self.episode_step += 1
        self.loc = np.random.uniform(size=(1,)) * 2 - 1
        return self.loc, reward, self.episode_step >= self.episode_length, None 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:7,代碼來源:gaussian_density_as_reward_env.py

示例13: get_max_reward

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def get_max_reward(self):
        max_reward_per_step = stats.norm(loc=0.0, scale=self.scale).pdf(0.0)
        return self.episode_length * max_reward_per_step 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:5,代碼來源:gaussian_density_as_reward_env.py

示例14: forward

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def forward(self, z, mu, sig):
        self.save_for_backward(z, mu, sig)
        p = st.norm(mu.cpu().numpy(),sig.cpu().numpy())
        return torch.DoubleTensor((self.gamma_under + self.gamma_over) * p.cdf(
            z.cpu().numpy()) - self.gamma_under).cuda() 
開發者ID:locuslab,項目名稱:e2e-model-learning,代碼行數:7,代碼來源:model_classes.py

示例15: backward

# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import norm [as 別名]
def backward(self, grad_output):
        z, mu, sig = self.saved_tensors
        p = st.norm(mu.cpu().numpy(),sig.cpu().numpy())
        pz = torch.DoubleTensor(p.pdf(z.cpu().numpy())).cuda()
        
        dz = (self.gamma_under + self.gamma_over) * pz
        dmu = -dz
        dsig = -(self.gamma_under + self.gamma_over)*(z-mu) / sig * pz
        return grad_output * dz, grad_output * dmu, grad_output * dsig 
開發者ID:locuslab,項目名稱:e2e-model-learning,代碼行數:11,代碼來源:model_classes.py


注:本文中的scipy.stats.norm方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。