當前位置: 首頁>>代碼示例>>Python>>正文


Python norm.fit方法代碼示例

本文整理匯總了Python中scipy.stats.norm.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python norm.fit方法的具體用法?Python norm.fit怎麽用?Python norm.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats.norm的用法示例。


在下文中一共展示了norm.fit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: draw_pdf

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def draw_pdf(var1, var2=None, label1='var1', label2='var2', xlab='variable', \
        ylab='Normalized frequency', linewidth=2, framealpha=0.3, \
        markersize=5, fontsize=18, xmax=18, binfac=1): 
    
    bins = range(xmax+1)
    (mu, sigma) = norm.fit(var1)
    y1 = mlab.normpdf(bins, mu, sigma)
    figure()
    grid('on')
    plot(bins, y1, 'b-o', linewidth=linewidth, markersize=markersize, label=label1)
    if var2 != None:
        (mu, sigma) = norm.fit(var2)
        y2 = mlab.normpdf(bins, mu, sigma)
        plot(bins, y2, 'r-o', linewidth=linewidth, markersize=markersize, label=label2)
    xlabel(xlab, fontsize=fontsize)
    ylabel(ylab, fontsize=fontsize)
    xlim(0,xmax)
    tick_params(axis='both', which='major', labelsize=fontsize)
    if var2 != None:
        legend(fancybox=True, framealpha=framealpha, loc='upper right', fontsize=fontsize)
    
    return 
開發者ID:dsavransky,項目名稱:EXOSIMS,代碼行數:24,代碼來源:analysis_tools.py

示例2: doc_thres

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def doc_thres(model, data, model_type, scale = 2.):
    train_y = data['train_set_Y']
    if "mlp" in model_type:
        train_pred = model.predict(data['train_set_X'])
    else:
        train_pred = model.predict(data['train_set_idx_X'])
    #print train_y.shape, train_pred.shape 
    def fit(prob_pos_X):
        prob_pos = [p for p in prob_pos_X]+[2-p for p in prob_pos_X]
        pos_mu, pos_std = dist_model.fit(prob_pos)
        return pos_std
    stds = []
    for c in range(train_pred.shape[-1]):
        idx = [train_y == c]
        c_pred = train_pred[idx]
        c_prob = c_pred[:,c]
        std = fit(c_prob)
        stds.append(std)
    thres = [max(0.5, 1. - scale * std) for std in stds]
    return thres 
開發者ID:howardhsu,項目名稱:Meta-Open-World-Learning,代碼行數:22,代碼來源:eval.py

示例3: fit_predict

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def fit_predict(self, X, y=None):
        """Fit the model according to the given training data and predict if a
        particular training sample is an outlier or not.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training Data.

        y : ignored

        Returns
        -------
        y_pred : array-like of shape (n_samples,)
            Return -1 for outliers and +1 for inliers.
        """

        if hasattr(self, 'novelty'):
            check_novelty(self.novelty, 'fit_predict')

        return self.fit(X).predict() 
開發者ID:Y-oHr-N,項目名稱:kenchi,代碼行數:23,代碼來源:base.py

示例4: plot_t_value_hist

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def plot_t_value_hist(
	img_path='~/ni_data/ofM.dr/l1/as_composite/sub-5703/ses-ofM/sub-5703_ses-ofM_task-EPI_CBV_chr_longSOA_tstat.nii.gz',
	roi_path='~/ni_data/templates/roi/DSURQEc_ctx.nii.gz',
	mask_path='/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii',
	save_as='~/qc_tvalues.pdf',
	):
	"""Make t-value histogram plot"""

	f, axarr = plt.subplots(1, sharex=True)

	roi = nib.load(path.expanduser(roi_path))
	roi_data = roi.get_data()
	mask = nib.load(path.expanduser(mask_path))
	mask_data = mask.get_data()
	idx = np.nonzero(np.multiply(roi_data,mask_data))
	img = nib.load(path.expanduser(img_path))
	data = img.get_data()[idx]
	(mu, sigma) = norm.fit(data)
	n, bins, patches = axarr.hist(data,'auto',normed=1, facecolor='green', alpha=0.75)
	y = mlab.normpdf(bins, mu, sigma)

	axarr.plot(bins, y, 'r--', linewidth=2)
	axarr.set_title('Histogram of t-values $\mathrm{(\mu=%.3f,\ \sigma=%.3f}$)' %(mu, sigma))
	axarr.set_xlabel('t-values')
	plt.savefig(path.expanduser(save_as)) 
開發者ID:IBT-FMI,項目名稱:SAMRI,代碼行數:27,代碼來源:qc.py

示例5: test_megkde_2d_basic

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def test_megkde_2d_basic():
    # Draw from normal, fit KDE, see if sampling from kde's pdf recovers norm
    np.random.seed(1)
    data = np.random.multivariate_normal([0, 1], [[1.0, 0.], [0., 0.75 ** 2]], size=10000)
    xs, ys = np.linspace(-4, 4, 50), np.linspace(-4, 4, 50)
    xx, yy = np.meshgrid(xs, ys, indexing='ij')
    samps = np.vstack((xx.flatten(), yy.flatten())).T
    zs = MegKDE(data).evaluate(samps).reshape(xx.shape)
    zs_x = zs.sum(axis=1)
    zs_y = zs.sum(axis=0)
    cs_x = zs_x.cumsum()
    cs_x /= cs_x[-1]
    cs_x[0] = 0
    cs_y = zs_y.cumsum()
    cs_y /= cs_y[-1]
    cs_y[0] = 0
    samps_x = interp1d(cs_x, xs)(np.random.uniform(size=10000))
    samps_y = interp1d(cs_y, ys)(np.random.uniform(size=10000))
    mu_x, std_x = norm.fit(samps_x)
    mu_y, std_y = norm.fit(samps_y)
    assert np.isclose(mu_x, 0, atol=0.1)
    assert np.isclose(std_x, 1.0, atol=0.1)
    assert np.isclose(mu_y, 1, atol=0.1)
    assert np.isclose(std_y, 0.75, atol=0.1) 
開發者ID:Samreay,項目名稱:ChainConsumer,代碼行數:26,代碼來源:test_kde.py

示例6: fit_t

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def fit_t(ret):
    parm = t.fit(ret)
    nu, mu_t, sig_t = parm
    nu = np.round(nu)
    return mu_t, sig_t, nu 
開發者ID:naripok,項目名稱:cryptotrader,代碼行數:7,代碼來源:risk.py

示例7: get_stroke_properties

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def get_stroke_properties(self, stroke_widths):
        if len(stroke_widths) == 0:
            return (0, 0, 0, 0, 0, 0)
        try:
            most_probable_stroke_width = mode(stroke_widths, axis=None)[0][0]
            most_probable_stroke_width_count = mode(stroke_widths, axis=None)[1][0]
        except IndexError:
            most_probable_stroke_width = 0
            most_probable_stroke_width_count = 0
        try:
            mean, std = norm.fit(stroke_widths)
            x_min, x_max = int(min(stroke_widths)), int(max(stroke_widths))
        except ValueError:
            mean, std, x_min, x_max = 0, 0, 0, 0
        return most_probable_stroke_width, most_probable_stroke_width_count, mean, std, x_min, x_max 
開發者ID:azmiozgen,項目名稱:text-detection,代碼行數:17,代碼來源:text_detection.py

示例8: _rerender

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def _rerender(self):
        nmr_maps = len(self.maps_to_show)
        if self._show_trace:
            nmr_maps *= 2

        grid = GridSpec(nmr_maps, 1, left=0.04, right=0.96, top=0.94, bottom=0.06, hspace=0.2)

        i = 0
        for map_name in self.maps_to_show:
            samples = self._voxels[map_name]

            if self._sample_indices is not None:
                samples = samples[:, self._sample_indices]

            title = map_name
            if map_name in self.names:
                title = self.names[map_name]

            if isinstance(self._nmr_bins, dict) and map_name in self._nmr_bins:
                nmr_bins = self._nmr_bins[map_name]
            else:
                nmr_bins = self._nmr_bins

            hist_plot = plt.subplot(grid[i])
            try:
                n, bins, patches = hist_plot.hist(np.nan_to_num(samples[self.voxel_ind, :]), nmr_bins, normed=True)
                plt.title(title)
                i += 1

                if self._fit_gaussian:
                    mu, sigma = norm.fit(samples[self.voxel_ind, :])
                    bincenters = 0.5*(bins[1:] + bins[:-1])
                    y = mlab.normpdf(bincenters, mu, sigma)
                    hist_plot.plot(bincenters, y, 'r', linewidth=1)

                if self._show_trace:
                    trace_plot = plt.subplot(grid[i])
                    trace_plot.plot(samples[self.voxel_ind, :])
                    i += 1
            except IndexError:
                pass 
開發者ID:robbert-harms,項目名稱:MDT,代碼行數:43,代碼來源:samples.py

示例9: _get_random_variable

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def _get_random_variable(self):
        """Get the RV object according to the derived anomaly scores."""

        loc, scale = norm.fit(self.anomaly_score_)

        return norm(loc=loc, scale=scale) 
開發者ID:Y-oHr-N,項目名稱:kenchi,代碼行數:8,代碼來源:base.py

示例10: fit

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def fit(self, X, y=None):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.

        y : ignored

        Returns
        -------
        self : object
            Return self.
        """

        self._check_params()

        X                     = self._check_array(X, estimator=self)

        self._fit(X)

        self.classes_         = np.array([NEG_LABEL, POS_LABEL])
        _, self.n_features_   = X.shape
        self.anomaly_score_   = self._anomaly_score(X)
        self.threshold_       = self._get_threshold()
        self.contamination_   = self._get_contamination()
        self.random_variable_ = self._get_random_variable()

        return self 
開發者ID:Y-oHr-N,項目名稱:kenchi,代碼行數:32,代碼來源:base.py

示例11: plot_galaxy_fit_subplot

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def plot_galaxy_fit_subplot(self, fit):
        if self.plot_subplot_galaxy_fit:
            fit_galaxy_plots.subplot_fit_galaxy(
                fit=fit, include=self.include, sub_plotter=self.sub_plotter
            ) 
開發者ID:Jammy2211,項目名稱:PyAutoLens,代碼行數:7,代碼來源:visualizer.py

示例12: plot_fit_individuals

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def plot_fit_individuals(self, fit):

        fit_galaxy_plots.individuals(
            fit=fit,
            plot_image=self.plot_galaxy_fit_image,
            plot_noise_map=self.plot_galaxy_fit_noise_map,
            plot_model_image=self.plot_galaxy_fit_model_image,
            plot_residual_map=self.plot_galaxy_fit_residual_map,
            plot_chi_squared_map=self.plot_galaxy_fit_chi_squared_map,
            include=self.include,
            plotter=self.plotter,
        ) 
開發者ID:Jammy2211,項目名稱:PyAutoLens,代碼行數:14,代碼來源:visualizer.py

示例13: visualize_stochastic_histogram

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def visualize_stochastic_histogram(
        self, log_evidences, max_log_evidence, during_analysis
    ):

        if log_evidences is None:
            return

        plotter = self.plotter.plotter_with_new_output(
            path=self.plotter.output.path + "other/"
        )

        if self.plot_stochastic_histogram and not during_analysis:

            bins = conf.instance.general.get(
                "inversion", "stochastic_histogram_bins", int
            )

            (mu, sigma) = norm.fit(log_evidences)
            n, bins, patches = plt.hist(x=log_evidences, bins=bins, density=1)
            y = norm.pdf(bins, mu, sigma)
            plt.plot(bins, y, "--")
            plt.xlabel("log evidence")
            plt.title("Stochastic Log Evidence Histogram")
            plt.axvline(max_log_evidence, color="r")
            plt.savefig(
                f"{plotter.output.path}stochastic_histogram.png", bbox_inches="tight"
            ) 
開發者ID:Jammy2211,項目名稱:PyAutoLens,代碼行數:29,代碼來源:visualizer.py

示例14: visualize_fit_in_fits

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def visualize_fit_in_fits(self, fit):

        fits_plotter = self.plotter.plotter_with_new_output(
            path=self.plotter.output.path + "fit_imaging/fits/", format="fits"
        )

        fit_imaging_plots.individuals(
            fit=fit,
            plot_image=True,
            plot_noise_map=True,
            plot_signal_to_noise_map=True,
            plot_model_image=True,
            plot_residual_map=True,
            plot_normalized_residual_map=True,
            plot_chi_squared_map=True,
            plot_subtracted_images_of_planes=True,
            plot_model_images_of_planes=True,
            plot_plane_images_of_planes=True,
            include=self.include,
            plotter=fits_plotter,
        )

        if fit.inversion is not None:

            fits_plotter = self.plotter.plotter_with_new_output(
                path=self.plotter.output.path + "inversion/fits/", format="fits"
            )

            inversion_plots.individuals(
                inversion=fit.inversion,
                plot_reconstructed_image=True,
                plot_interpolated_reconstruction=True,
                plot_interpolated_errors=True,
                include=self.include,
                plotter=fits_plotter,
            ) 
開發者ID:Jammy2211,項目名稱:PyAutoLens,代碼行數:38,代碼來源:visualizer.py

示例15: visualize_hyper_galaxy

# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import fit [as 別名]
def visualize_hyper_galaxy(self, fit, hyper_fit, galaxy_image, contribution_map_in):
        hyper_plots.subplot_fit_hyper_galaxy(
            fit=fit,
            hyper_fit=hyper_fit,
            galaxy_image=galaxy_image,
            contribution_map_in=contribution_map_in,
            include=self.include,
            sub_plotter=self.sub_plotter,
        ) 
開發者ID:Jammy2211,項目名稱:PyAutoLens,代碼行數:11,代碼來源:visualizer.py


注:本文中的scipy.stats.norm.fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。