本文整理匯總了Python中scipy.stats.norm.cdf方法的典型用法代碼示例。如果您正苦於以下問題:Python norm.cdf方法的具體用法?Python norm.cdf怎麽用?Python norm.cdf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats.norm
的用法示例。
在下文中一共展示了norm.cdf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _get_scaler_function
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def _get_scaler_function(scaler_algo):
scaler = None
if scaler_algo == 'normcdf':
scaler = lambda x: norm.cdf(x, x.mean(), x.std())
elif scaler_algo == 'lognormcdf':
scaler = lambda x: norm.cdf(np.log(x), np.log(x).mean(), np.log(x).std())
elif scaler_algo == 'percentile':
scaler = lambda x: rankdata(x).astype(np.float64) / len(x)
elif scaler_algo == 'percentiledense':
scaler = lambda x: rankdata(x, method='dense').astype(np.float64) / len(x)
elif scaler_algo == 'ecdf':
from statsmodels.distributions import ECDF
scaler = lambda x: ECDF(x)
elif scaler_algo == 'none':
scaler = lambda x: x
else:
raise InvalidScalerException("Invalid scaler alogrithm. Must be either percentile or normcdf.")
return scaler
示例2: get_p_vals
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def get_p_vals(self, X):
'''
Imputes p-values from the Z-scores of `ScaledFScore` scores. Assuming incorrectly
that the scaled f-scores are normally distributed.
Parameters
----------
X : np.array
Array of word counts, shape (N, 2) where N is the vocab size. X[:,0] is the
positive class, while X[:,1] is the negative class.
Returns
-------
np.array of p-values
'''
z_scores = ScaledFZScore(self.scaler_algo, self.beta).get_scores(X[:,0], X[:,1])
return norm.cdf(z_scores)
示例3: cdf
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def cdf(self, y, f):
r"""
Cumulative density function of the likelihood.
Parameters
----------
y: ndarray
query quantiles, i.e.\ :math:`P(Y \leq y)`.
f: ndarray
latent function from the GLM prior (:math:`\mathbf{f} =
\boldsymbol\Phi \mathbf{w}`)
Returns
-------
cdf: ndarray
Cumulative density function evaluated at y.
"""
return bernoulli.cdf(y, expit(f))
示例4: test_shapes
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def test_shapes():
N = 100
y = np.ones(N)
f = np.ones(N) * 2
assert_shape = lambda x: x.shape == (N,)
assert_args = lambda out, args: \
all([o.shape == a.shape if not np.isscalar(a) else np.isscalar(o)
for o, a in zip(out, args)])
for like, args in zip(likelihoods, likelihood_args):
lobj = like()
assert_shape(lobj.loglike(y, f, *args))
assert_shape(lobj.Ey(f, *args))
assert_shape(lobj.df(y, f, *args))
assert_shape(lobj.cdf(y, f, *args))
assert_args(lobj.dp(y, f, *args), args)
示例5: test_bernoulli
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def test_bernoulli():
# Test we can at match a Bernoulli distribution from scipy
p = 0.5
dist = lk.Bernoulli()
x = np.array([0, 1])
p1 = bernoulli.logpmf(x, p)
p2 = dist.loglike(x, p)
np.allclose(p1, p2)
p1 = bernoulli.cdf(x, p)
p2 = dist.cdf(x, p)
np.allclose(p1, p2)
示例6: test_binom
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def test_binom():
# Test we can at match a Binomial distribution from scipy
p = 0.5
n = 5
dist = lk.Binomial()
x = np.random.randint(low=0, high=n, size=(10,))
p1 = binom.logpmf(x, p=p, n=n)
p2 = dist.loglike(x, p, n)
np.allclose(p1, p2)
p1 = binom.cdf(x, p=p, n=n)
p2 = dist.cdf(x, p, n)
np.allclose(p1, p2)
示例7: test_poisson
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def test_poisson():
# Test we can at match a Binomial distribution from scipy
mu = 2
dist = lk.Poisson()
x = np.random.randint(low=0, high=5, size=(10,))
p1 = poisson.logpmf(x, mu)
p2 = dist.loglike(x, mu)
np.allclose(p1, p2)
p1 = poisson.cdf(x, mu)
p2 = dist.cdf(x, mu)
np.allclose(p1, p2)
示例8: _p_val
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def _p_val(self):
r"""
Returns the p-value.
Returns
-------
p : float
The computed p value.
Notes
-----
When sample sizes are large enough (:math:`n > 20`), the distribution of :math:`U` is normally
distributed.
"""
p = 1 - norm.cdf(self.z_value)
return p * 2
示例9: __call__
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def __call__(self, df_resid, nobs, resid):
h = (df_resid)/nobs*(self.d**2 + (1-self.d**2)*\
Gaussian.cdf(self.d)-.5 - self.d/(np.sqrt(2*np.pi))*\
np.exp(-.5*self.d**2))
s = mad(resid)
subset = lambda x: np.less(np.fabs(resid/x),self.d)
chi = lambda s: subset(s)*(resid/s)**2/2+(1-subset(s))*(self.d**2/2)
scalehist = [np.inf,s]
niter = 1
while (np.abs(scalehist[niter-1] - scalehist[niter])>self.tol \
and niter < self.maxiter):
nscale = np.sqrt(1/(nobs*h)*np.sum(chi(scalehist[-1]))*\
scalehist[-1]**2)
scalehist.append(nscale)
niter += 1
#if niter == self.maxiter:
# raise ValueError("Huber's scale failed to converge")
return scalehist[-1]
示例10: testSecurityNormInvValueHolder
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def testSecurityNormInvValueHolder(self):
mm1 = SecurityNormInvValueHolder('open')
mm2 = SecurityNormInvValueHolder('open', fullAcc=True)
for i in range(len(self.aapl['close'])):
data = dict(aapl=dict(open=norm.cdf(self.aapl['open'][i])),
ibm=dict(open=norm.cdf(self.ibm['open'][i])))
mm1.push(data)
mm2.push(data)
value1 = mm1.value
value2 = mm2.value
for name in value1.index():
expected = norm.ppf(data[name]['open'])
calculated = value1[name]
self.assertAlmostEqual(expected, calculated, 6, 'at index {0}\n'
'expected: {1:.12f}\n'
'calculat: {2:.12f}'
.format(i, expected, calculated))
calculated = value2[name]
self.assertAlmostEqual(expected, calculated, 12, 'at index {0}\n'
'expected: {1:.12f}\n'
'calculat: {2:.12f}'
.format(i, expected, calculated))
示例11: testSecurityCeilValueHolder
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def testSecurityCeilValueHolder(self):
mm1 = SecurityCeilValueHolder('open')
for i in range(len(self.aapl['close'])):
data = dict(aapl=dict(open=norm.cdf(self.aapl['open'][i])),
ibm=dict(open=norm.cdf(self.ibm['open'][i])))
mm1.push(data)
value1 = mm1.value
for name in value1.index():
expected = math.ceil(data[name]['open'])
calculated = value1[name]
self.assertAlmostEqual(expected, calculated, 6, 'at index {0}\n'
'expected: {1:.12f}\n'
'calculat: {2:.12f}'
.format(i, expected, calculated))
示例12: testSecurityFloorValueHolder
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def testSecurityFloorValueHolder(self):
mm1 = SecurityFloorValueHolder('open')
for i in range(len(self.aapl['close'])):
data = dict(aapl=dict(open=norm.cdf(self.aapl['open'][i])),
ibm=dict(open=norm.cdf(self.ibm['open'][i])))
mm1.push(data)
value1 = mm1.value
for name in value1.index():
expected = math.floor(data[name]['open'])
calculated = value1[name]
self.assertAlmostEqual(expected, calculated, 6, 'at index {0}\n'
'expected: {1:.12f}\n'
'calculat: {2:.12f}'
.format(i, expected, calculated))
示例13: testSecurityRoundValueHolder
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def testSecurityRoundValueHolder(self):
mm1 = SecurityRoundValueHolder('open')
for i in range(len(self.aapl['close'])):
data = dict(aapl=dict(open=norm.cdf(self.aapl['open'][i])),
ibm=dict(open=norm.cdf(self.ibm['open'][i])))
mm1.push(data)
value1 = mm1.value
for name in value1.index():
expected = round(data[name]['open'])
calculated = value1[name]
self.assertAlmostEqual(expected, calculated, 6, 'at index {0}\n'
'expected: {1:.12f}\n'
'calculat: {2:.12f}'
.format(i, expected, calculated))
示例14: test_broadcasting
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def test_broadcasting(self):
np.random.seed(1234)
n = 4
# Construct a random covariance matrix.
data = np.random.randn(n, n)
cov = np.dot(data, data.T)
mean = np.random.randn(n)
# Construct an ndarray which can be interpreted as
# a 2x3 array whose elements are random data vectors.
X = np.random.randn(2, 3, n)
# Check that multiple data points can be evaluated at once.
desired_pdf = multivariate_normal.pdf(X, mean, cov)
desired_cdf = multivariate_normal.cdf(X, mean, cov)
for i in range(2):
for j in range(3):
actual = multivariate_normal.pdf(X[i, j], mean, cov)
assert_allclose(actual, desired_pdf[i,j])
# Repeat for cdf
actual = multivariate_normal.cdf(X[i, j], mean, cov)
assert_allclose(actual, desired_cdf[i,j], rtol=1e-3)
示例15: test_haar
# 需要導入模塊: from scipy.stats import norm [as 別名]
# 或者: from scipy.stats.norm import cdf [as 別名]
def test_haar(self):
# Test that the eigenvalues, which lie on the unit circle in
# the complex plane, are uncorrelated.
# Generate samples
dim = 5
samples = 1000 # Not too many, or the test takes too long
np.random.seed(514) # Note that the test is sensitive to seed too
xs = unitary_group.rvs(dim, size=samples)
# The angles "x" of the eigenvalues should be uniformly distributed
# Overall this seems to be a necessary but weak test of the distribution.
eigs = np.vstack(scipy.linalg.eigvals(x) for x in xs)
x = np.arctan2(eigs.imag, eigs.real)
res = kstest(x.ravel(), uniform(-np.pi, 2*np.pi).cdf)
assert_(res.pvalue > 0.05)