當前位置: 首頁>>代碼示例>>Python>>正文


Python multivariate_normal.rvs方法代碼示例

本文整理匯總了Python中scipy.stats.multivariate_normal.rvs方法的典型用法代碼示例。如果您正苦於以下問題:Python multivariate_normal.rvs方法的具體用法?Python multivariate_normal.rvs怎麽用?Python multivariate_normal.rvs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.stats.multivariate_normal的用法示例。


在下文中一共展示了multivariate_normal.rvs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_rvs_shape

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_rvs_shape(self):
        # Check that rvs parses the mean and covariance correctly, and returns
        # an array of the right shape
        N = 300
        d = 4
        sample = multivariate_normal.rvs(mean=np.zeros(d), cov=1, size=N)
        assert_equal(sample.shape, (N, d))

        sample = multivariate_normal.rvs(mean=None,
                                         cov=np.array([[2, .1], [.1, 1]]),
                                         size=N)
        assert_equal(sample.shape, (N, 2))

        u = multivariate_normal(mean=0, cov=1)
        sample = u.rvs(N)
        assert_equal(sample.shape, (N, )) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:test_multivariate.py

示例2: test_large_sample

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_large_sample(self):
        # Generate large sample and compare sample mean and sample covariance
        # with mean and covariance matrix.

        np.random.seed(2846)

        n = 3
        mean = np.random.randn(n)
        M = np.random.randn(n, n)
        cov = np.dot(M, M.T)
        size = 5000

        sample = multivariate_normal.rvs(mean, cov, size)

        assert_allclose(numpy.cov(sample.T), cov, rtol=1e-1)
        assert_allclose(sample.mean(0), mean, rtol=1e-1) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:test_multivariate.py

示例3: test_frozen_matrix_normal

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_frozen_matrix_normal(self):
        for i in range(1,5):
            for j in range(1,5):
                M = 0.3 * np.ones((i,j))
                U = 0.5 * np.identity(i) + 0.5 * np.ones((i,i))
                V = 0.7 * np.identity(j) + 0.3 * np.ones((j,j))

                frozen = matrix_normal(mean=M, rowcov=U, colcov=V)

                rvs1 = frozen.rvs(random_state=1234)
                rvs2 = matrix_normal.rvs(mean=M, rowcov=U, colcov=V,
                                         random_state=1234)
                assert_equal(rvs1, rvs2)

                X = frozen.rvs(random_state=1234)

                pdf1 = frozen.pdf(X)
                pdf2 = matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V)
                assert_equal(pdf1, pdf2)

                logpdf1 = frozen.logpdf(X)
                logpdf2 = matrix_normal.logpdf(X, mean=M, rowcov=U, colcov=V)
                assert_equal(logpdf1, logpdf2) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_multivariate.py

示例4: test_array_input

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_array_input(self):
        # Check array of inputs has the same output as the separate entries.
        num_rows = 4
        num_cols = 3
        M = 0.3 * np.ones((num_rows,num_cols))
        U = 0.5 * np.identity(num_rows) + 0.5 * np.ones((num_rows, num_rows))
        V = 0.7 * np.identity(num_cols) + 0.3 * np.ones((num_cols, num_cols))
        N = 10

        frozen = matrix_normal(mean=M, rowcov=U, colcov=V)
        X1 = frozen.rvs(size=N, random_state=1234)
        X2 = frozen.rvs(size=N, random_state=4321)
        X = np.concatenate((X1[np.newaxis,:,:,:],X2[np.newaxis,:,:,:]), axis=0)
        assert_equal(X.shape, (2, N, num_rows, num_cols))

        array_logpdf = frozen.logpdf(X)
        assert_equal(array_logpdf.shape, (2, N))
        for i in range(2):
            for j in range(N):
                separate_logpdf = matrix_normal.logpdf(X[i,j], mean=M,
                                                       rowcov=U, colcov=V)
                assert_allclose(separate_logpdf, array_logpdf[i,j], 1E-10) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:24,代碼來源:test_multivariate.py

示例5: test_moments

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_moments(self):
        # Check that the sample moments match the parameters
        num_rows = 4
        num_cols = 3
        M = 0.3 * np.ones((num_rows,num_cols))
        U = 0.5 * np.identity(num_rows) + 0.5 * np.ones((num_rows, num_rows))
        V = 0.7 * np.identity(num_cols) + 0.3 * np.ones((num_cols, num_cols))
        N = 1000

        frozen = matrix_normal(mean=M, rowcov=U, colcov=V)
        X = frozen.rvs(size=N, random_state=1234)

        sample_mean = np.mean(X,axis=0)
        assert_allclose(sample_mean, M, atol=0.1)

        sample_colcov = np.cov(X.reshape(N*num_rows,num_cols).T)
        assert_allclose(sample_colcov, V, atol=0.1)

        sample_rowcov = np.cov(np.swapaxes(X,1,2).reshape(
                                                        N*num_cols,num_rows).T)
        assert_allclose(sample_rowcov, U, atol=0.1) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:23,代碼來源:test_multivariate.py

示例6: test_det_and_ortho

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_det_and_ortho(self):
        xs = [[ortho_group.rvs(dim)
               for i in range(10)]
              for dim in range(2,12)]

        # Test that abs determinants are always +1
        dets = np.array([[np.linalg.det(x) for x in xx] for xx in xs])
        assert_allclose(np.fabs(dets), np.ones(dets.shape), rtol=1e-13)

        # Test that we get both positive and negative determinants
        # Check that we have at least one and less than 10 negative dets in a sample of 10. The rest are positive by the previous test.
        # Test each dimension separately
        assert_array_less([0]*10, [np.where(d < 0)[0].shape[0] for d in dets])
        assert_array_less([np.where(d < 0)[0].shape[0] for d in dets], [10]*10)

        # Test that these are orthogonal matrices
        for xx in xs:
            for x in xx:
                assert_array_almost_equal(np.dot(x, x.T),
                                          np.eye(x.shape[0])) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_multivariate.py

示例7: test_haar

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_haar(self):
        # Test that the eigenvalues, which lie on the unit circle in
        # the complex plane, are uncorrelated.

        # Generate samples
        dim = 5
        samples = 1000  # Not too many, or the test takes too long
        np.random.seed(514)  # Note that the test is sensitive to seed too
        xs = unitary_group.rvs(dim, size=samples)

        # The angles "x" of the eigenvalues should be uniformly distributed
        # Overall this seems to be a necessary but weak test of the distribution.
        eigs = np.vstack(scipy.linalg.eigvals(x) for x in xs)
        x = np.arctan2(eigs.imag, eigs.real)
        res = kstest(x.ravel(), uniform(-np.pi, 2*np.pi).cdf)
        assert_(res.pvalue > 0.05) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:test_multivariate.py

示例8: check_pickling

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def check_pickling(distfn, args):
    # check that a distribution instance pickles and unpickles
    # pay special attention to the random_state property

    # save the random_state (restore later)
    rndm = distfn.random_state

    distfn.random_state = 1234
    distfn.rvs(*args, size=8)
    s = pickle.dumps(distfn)
    r0 = distfn.rvs(*args, size=8)

    unpickled = pickle.loads(s)
    r1 = unpickled.rvs(*args, size=8)
    assert_equal(r0, r1)

    # restore the random_state
    distfn.random_state = rndm 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:20,代碼來源:test_multivariate.py

示例9: GP

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def GP(seq_length=30, num_samples=28*5*100, num_signals=1, scale=0.1, kernel='rbf', **kwargs):
    # the shape of the samples is num_samples x seq_length x num_signals
    samples = np.empty(shape=(num_samples, seq_length, num_signals))
    #T = np.arange(seq_length)/seq_length    # note, between 0 and 1
    T = np.arange(seq_length)    # note, not between 0 and 1
    if kernel == 'periodic':
        cov = periodic_kernel(T)
    elif kernel =='rbf':
        cov = rbf_kernel(T.reshape(-1, 1), gamma=scale)
    else:
        raise NotImplementedError
    # scale the covariance
    cov *= 0.2
    # define the distribution
    mu = np.zeros(seq_length)
    print(np.linalg.det(cov))
    distribution = multivariate_normal(mean=np.zeros(cov.shape[0]), cov=cov)
    pdf = distribution.logpdf
    # now generate samples
    for i in range(num_signals):
        samples[:, :, i] = distribution.rvs(size=num_samples)
    return samples, pdf 
開發者ID:ratschlab,項目名稱:RGAN,代碼行數:24,代碼來源:data_utils.py

示例10: test_alternatives

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_alternatives(self):
        """ Test implemented alternative hypotheses. """
        np.random.seed(42)
        n = 100
        a = mvn.rvs(mean=0, cov=1, size=n).reshape((n, 1))
        b = mvn.rvs(mean=1, cov=1, size=n).reshape((n, 1))
        c = mvn.rvs(mean=-1, cov=1, size=n).reshape((n, 1))

        for method in (statistics.score_t_test, statistics.score_hypergeometric_test, statistics.score_mann_whitney):

            _, pval_less = method(a, b, alternative=statistics.ALT_LESS)
            _, pval_two = method(a, b, alternative=statistics.ALT_TWO)
            _, pval_greater = method(a, b, alternative=statistics.ALT_GREATER)
            assert np.all(pval_less < pval_two < pval_greater)
            assert np.linalg.norm(pval_less + pval_greater - np.array([1.0])) < 1e-8

            _, pval_less = method(b, c, alternative=statistics.ALT_LESS)
            _, pval_two = method(b, c, alternative=statistics.ALT_TWO)
            _, pval_greater = method(b, c, alternative=statistics.ALT_GREATER)
            assert np.all(pval_greater < pval_two < pval_less)
            assert np.linalg.norm(pval_less + pval_greater - np.array([1.0])) < 1e-8 
開發者ID:biolab,項目名稱:orange3-bioinformatics,代碼行數:23,代碼來源:test_statistics.py

示例11: test_alternatives_2d

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_alternatives_2d(self):
        """ Test implemented alternative hypotheses. """
        np.random.seed(42)
        n = 100
        a1 = mvn.rvs(mean=0, cov=1, size=n).reshape((n, 1))
        a2 = mvn.rvs(mean=1, cov=1, size=n).reshape((n, 1))
        b1 = mvn.rvs(mean=2, cov=1, size=n).reshape((n, 1))
        b2 = mvn.rvs(mean=3, cov=1, size=n).reshape((n, 1))
        _a = np.hstack((a1, a2))
        _b = np.hstack((b1, b2))

        for method in (statistics.score_t_test, statistics.score_hypergeometric_test, statistics.score_mann_whitney):
            _, pval_less = method(_a, _b, alternative=statistics.ALT_LESS)
            _, pval_two = method(_a, _b, alternative=statistics.ALT_TWO)
            _, pval_greater = method(_a, _b, alternative=statistics.ALT_GREATER)
            assert np.all(np.logical_and(pval_less < pval_two, pval_two < pval_greater))
            assert np.linalg.norm(pval_less + pval_greater - np.array([1.0])) < 1e-8 
開發者ID:biolab,項目名稱:orange3-bioinformatics,代碼行數:19,代碼來源:test_statistics.py

示例12: function

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def function(self, state, noise=False, **kwargs):
        """Model linear function :math:`f_k(x(k),w(k)) = F_k(x_k) + w_k`

        Parameters
        ----------
        state: :class:`~.State`
            An input state
        noise: :class:`numpy.ndarray` or bool
            An externally generated random process noise sample (the default is
            `False`, in which case no noise will be added
            if 'True', the output of :meth:`~.Model.rvs` is added)

        Returns
        -------
        : :class:`State`
            The updated State with the model function evaluated.
        """
        if isinstance(noise, bool) or noise is None:
            if noise:
                noise = self.rvs(**kwargs)
            else:
                noise = 0

        return self.matrix(**kwargs) @ state.state_vector + noise 
開發者ID:dstl,項目名稱:Stone-Soup,代碼行數:26,代碼來源:base.py

示例13: test_multivariate_normal_rvs_zero_covariance

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_multivariate_normal_rvs_zero_covariance(self):
        mean = np.zeros(2)
        covariance = np.zeros((2, 2))
        model = multivariate_normal(mean, covariance, allow_singular=True)
        sample = model.rvs()
        assert_equal(sample, [0, 0]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:8,代碼來源:test_multivariate.py

示例14: test_default_inputs

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_default_inputs(self):
        # Check that default argument handling works
        num_rows = 4
        num_cols = 3
        M = 0.3 * np.ones((num_rows,num_cols))
        U = 0.5 * np.identity(num_rows) + 0.5 * np.ones((num_rows, num_rows))
        V = 0.7 * np.identity(num_cols) + 0.3 * np.ones((num_cols, num_cols))
        Z = np.zeros((num_rows, num_cols))
        Zr = np.zeros((num_rows, 1))
        Zc = np.zeros((1, num_cols))
        Ir = np.identity(num_rows)
        Ic = np.identity(num_cols)
        I1 = np.identity(1)

        assert_equal(matrix_normal.rvs(mean=M, rowcov=U, colcov=V).shape,
                     (num_rows, num_cols))
        assert_equal(matrix_normal.rvs(mean=M).shape,
                     (num_rows, num_cols))
        assert_equal(matrix_normal.rvs(rowcov=U).shape,
                     (num_rows, 1))
        assert_equal(matrix_normal.rvs(colcov=V).shape,
                     (1, num_cols))
        assert_equal(matrix_normal.rvs(mean=M, colcov=V).shape,
                     (num_rows, num_cols))
        assert_equal(matrix_normal.rvs(mean=M, rowcov=U).shape,
                     (num_rows, num_cols))
        assert_equal(matrix_normal.rvs(rowcov=U, colcov=V).shape,
                     (num_rows, num_cols))

        assert_equal(matrix_normal(mean=M).rowcov, Ir)
        assert_equal(matrix_normal(mean=M).colcov, Ic)
        assert_equal(matrix_normal(rowcov=U).mean, Zr)
        assert_equal(matrix_normal(rowcov=U).colcov, I1)
        assert_equal(matrix_normal(colcov=V).mean, Zc)
        assert_equal(matrix_normal(colcov=V).rowcov, I1)
        assert_equal(matrix_normal(mean=M, rowcov=U).colcov, Ic)
        assert_equal(matrix_normal(mean=M, colcov=V).rowcov, Ir)
        assert_equal(matrix_normal(rowcov=U, colcov=V).mean, Z) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:40,代碼來源:test_multivariate.py

示例15: test_1D_is_chisquared

# 需要導入模塊: from scipy.stats import multivariate_normal [as 別名]
# 或者: from scipy.stats.multivariate_normal import rvs [as 別名]
def test_1D_is_chisquared(self):
        # The 1-dimensional Wishart with an identity scale matrix is just a
        # chi-squared distribution.
        # Test variance, mean, entropy, pdf
        # Kolgomorov-Smirnov test for rvs
        np.random.seed(482974)

        sn = 500
        dim = 1
        scale = np.eye(dim)

        df_range = np.arange(1, 10, 2, dtype=float)
        X = np.linspace(0.1,10,num=10)
        for df in df_range:
            w = wishart(df, scale)
            c = chi2(df)

            # Statistics
            assert_allclose(w.var(), c.var())
            assert_allclose(w.mean(), c.mean())
            assert_allclose(w.entropy(), c.entropy())

            # PDF
            assert_allclose(w.pdf(X), c.pdf(X))

            # rvs
            rvs = w.rvs(size=sn)
            args = (df,)
            alpha = 0.01
            check_distribution_rvs('chi2', args, alpha, rvs) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:32,代碼來源:test_multivariate.py


注:本文中的scipy.stats.multivariate_normal.rvs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。