本文整理匯總了Python中scipy.stats.mode方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.mode方法的具體用法?Python stats.mode怎麽用?Python stats.mode使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.mode方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: point_add_sem_label
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def point_add_sem_label(pt, sem, k=10):
sem_pt = sem[:, 0:3]
sem_label = sem[:,3]
pt_label = np.zeros(pt.shape[0])
if pt.shape[0]==0:
return pt_label
else:
nbrs = NearestNeighbors(n_neighbors=k,algorithm='ball_tree').fit(sem_pt)
distances, indices = nbrs.kneighbors(pt)
for i in range(pt.shape[0]):
labels = sem_label[indices[i]]
l, count = stats.mode(labels, axis=None)
pt_label[i] = l
return pt_label
# ----------------------------------------
# Testing
# ----------------------------------------
示例2: transform
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def transform(self, X):
""" transform
Does the transformation process in the samples in X.
Parameters
----------
X: numpy.ndarray of shape (n_samples, n_features)
The sample or set of samples that should be transformed.
"""
r, c = get_dimensions(X)
for i in range(r):
if self.strategy in ['mean', 'median', 'mode']:
self.window.add_element([X[i][:]])
for j in range(c):
if X[i][j] in self.missing_value or np.isnan(X[i][j]):
X[i][j] = self._get_substitute(j)
return X
示例3: partial_fit
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def partial_fit(self, X, y=None):
""" partial_fit
Partial fits the model.
Parameters
----------
X: numpy.ndarray of shape (n_samples, n_features)
The sample or set of samples that should be transformed.
y: Array-like
The true labels.
Returns
-------
MissingValuesCleaner
self
"""
X = np.asarray(X)
if self.strategy in ['mean', 'median', 'mode']:
self.window.add_element(X)
return self
示例4: _get_redop
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def _get_redop(red_op, weights=None, axis=None):
if red_op in ['mean', 'average']:
if weights is None:
def fred(x, w): return np.mean(x, axis=axis)
else:
def fred(x, w): return np.average(x, weights=w, axis=axis)
elif red_op == 'median':
def fred(x, w): return np.median(x, axis=axis)
elif red_op == 'mode':
if weights is None:
def fred(x, w): return mode(x, axis=axis)[0].ravel()
else:
def fred(x, w): return weighted_mode(x, w, axis=axis)
elif red_op == 'sum':
def fred(x, w): return np.sum(x if w is None else w * x, axis=axis)
elif red_op == 'max':
def fred(x, w): return np.max(x, axis=axis)
elif red_op == 'min':
def fred(x, w): return np.min(x, axis=axis)
else:
raise ValueError("Unknown reduction operation '{0}'".format(red_op))
return fred
示例5: test
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def test(self, test_data, test_target):
t = 0
# TODO: refactor the RF test function to depend not on an external
# root but on itself
dt = FastDecisionTree(1, 1)
yhat_forest = np.zeros((test_data.shape[0], self.n_trees))
for i in range(len(self.roots)):
r = self.roots[i]
prog_bar(t, self.n_trees)
t += 1
yhat_forest[:, i:] = dt.test_preds(r, test_data)
prog_bar(self.n_trees, self.n_trees)
yhat = stats.mode(yhat_forest, axis=1)[0]
return yhat
示例6: testForest
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def testForest(roots, X, Y):
errs = 0.0
for i in range(0, X.shape[0]):
votes = []
for r in roots:
yhat = np.argmax(dt_value(r, X[i, :]))
votes.append(yhat)
yhatEnsemble = stats.mode(votes)
if Y[i, int(yhatEnsemble[0])] != 1:
errs += 1.0
return errs/X.shape[0]
# Turn off runtime warnings for invalid or divide errors
# These arise when calculating the entropy. We set any invalid entropy
# calculations (e.g. log(0)) to 0.
示例7: test_random_weights
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def test_random_weights():
# set this up so that each row should have a weighted mode of 6,
# with a score that is easily reproduced
mode_result = 6
rng = np.random.RandomState(0)
x = rng.randint(mode_result, size=(100, 10))
w = rng.random_sample(x.shape)
x[:, :5] = mode_result
w[:, :5] += 1
mode, score = weighted_mode(x, w, axis=1)
assert_array_equal(mode, mode_result)
assert_array_almost_equal(score.ravel(), w[:, :5].sum(1))
示例8: find_key
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def find_key(streamciphers, iterations=50):
ciphers = deepcopy(streamciphers)
n = len(ciphers)
# key size of longest cipher
ksize = len(max(ciphers, key=len))
possiblekeys = []
for _ in range(iterations):
shuffle(ciphers)
k = bytearray(ksize)
for a in range(n - 2):
for b in range(a + 1, n - 1):
for c in range(b + 1, n):
x, y, z = truncate3(ciphers[a], ciphers[b], ciphers[c])
build_key(k, x, y, z)
possiblekeys.append(k)
# finalize key using frequency analysis
key_array = stats.mode(numpy.array(possiblekeys))[0][0]
return bytes(list(key_array))
示例9: test_axes
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def test_axes(self):
data1 = [10, 10, 30, 40]
data2 = [10, 10, 10, 10]
data3 = [20, 10, 20, 20]
data4 = [30, 30, 30, 30]
data5 = [40, 30, 30, 30]
arr = np.array([data1, data2, data3, data4, data5])
vals = stats.mode(arr, axis=None)
assert_equal(vals[0], np.array([30]))
assert_equal(vals[1], np.array([8]))
vals = stats.mode(arr, axis=0)
assert_equal(vals[0], np.array([[10, 10, 30, 30]]))
assert_equal(vals[1], np.array([[2, 3, 3, 2]]))
vals = stats.mode(arr, axis=1)
assert_equal(vals[0], np.array([[10], [10], [20], [30], [30]]))
assert_equal(vals[1], np.array([[2], [4], [3], [4], [3]]))
示例10: predict
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def predict(record):
ecg = load.load_ecg(record +".mat")
preproc = util.load(".")
x = preproc.process_x([ecg])
params = json.load(open("config.json"))
params.update({
"compile" : False,
"input_shape": [None, 1],
"num_categories": len(preproc.classes)
})
model = network.build_network(**params)
model.load_weights('model.hdf5')
probs = model.predict(x)
prediction = sst.mode(np.argmax(probs, axis=2).squeeze())[0][0]
return preproc.int_to_class[prediction]
示例11: main
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def main():
repeat = 10
num_point = 500
model.eval()
torch.set_grad_enabled(False)
# load pc(should be in local gripper coordinate)
# local_pc: (N, 3)
# local_pc = np.load("test.npy")
local_pc = np.random.random([500, 3]) # test only
predict = []
for _ in range(repeat):
if len(local_pc) >= num_point:
local_pc = local_pc[np.random.choice(len(local_pc), num_point, replace=False)]
else:
local_pc = local_pc[np.random.choice(len(local_pc), num_point, replace=True)]
# run model
predict.append(test_network(model, local_pc)[0])
print("voting: ", predict)
predict = mode(predict).mode[0]
# output
print("Test result:", predict)
示例12: resample_eICU_patient
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def resample_eICU_patient(pid, resample_factor_in_min, variables, upto_in_minutes):
"""
Resample a *single* patient.
"""
pat_df = pd.read_hdf(paths.eICU_hdf_dir + '/vitalPeriodic.h5',
where='patientunitstayid = ' + str(pid),
columns=['observationoffset', 'patientunitstayid'] + variables,
mode='r')
# sometimes it's empty
if pat_df.empty:
return None
if not upto_in_minutes is None:
pat_df = pat_df.loc[0:upto_in_minutes*60]
# convert the offset to a TimedeltaIndex (necessary for resampling)
pat_df.observationoffset = pd.TimedeltaIndex(pat_df.observationoffset, unit='m')
pat_df.set_index('observationoffset', inplace=True)
pat_df.sort_index(inplace=True)
# resample by time
pat_df_resampled = pat_df.resample(str(resample_factor_in_min) + 'T').median() # pandas ignores NA in median by default
# rename pid, cast to int
pat_df_resampled.rename(columns={'patientunitstayid': 'pid'}, inplace=True)
pat_df_resampled['pid'] = np.int32(pat_df_resampled['pid'])
# get offsets in minutes from index
pat_df_resampled['offset'] = np.int32(pat_df_resampled.index.total_seconds()/60)
return pat_df_resampled
示例13: get_weather_dict
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def get_weather_dict(self,data_dir):
t0 = time()
filename = '../data_raw/' + data_dir.split('/')[-2] + '_weather.csv.dict.pickle'
dumpload = DumpLoad( filename)
if dumpload.isExisiting():
return dumpload.load()
resDict = {}
df = self.load_weatherdf(data_dir)
for index, row in df.iterrows():
resDict[row['time_slotid']] = (index, row['weather'], row['temparature'], row['pm25'])
for name, group in df.groupby('time_date'):
resDict[name] = (-1, mode(group['weather'])[0][0], mode(group['temparature'])[0][0], mode(group['pm25'])[0][0])
dumpload.dump(resDict)
print "dump weather dict:", round(time()-t0, 3), "s"
return resDict
示例14: find_history_data
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def find_history_data(self, row, history_dict=None,):
start_district_id = row.iloc[0]
time_id = row.iloc[1]
index = ['history_mean','history_median','history_mode','history_plus_mean','history_plus_median', 'history_plus_mode']
min_list = self.__get_historylist_from_dict(history_dict, start_district_id, time_id)
plus_list1 = self.__get_historylist_from_dict(history_dict, start_district_id, time_id-1)
plus_list2 = self.__get_historylist_from_dict(history_dict, start_district_id, time_id-2)
plus_list = np.array((plus_list1 + plus_list2 + min_list))
min_list = np.array(min_list)
res =pd.Series([min_list.mean(), np.median(min_list), mode(min_list)[0][0], plus_list.mean(), np.median(plus_list),mode(plus_list)[0][0]], index = index)
return res
return pd.Series(res, index = ['history_mean', 'history_mode', 'history_median'])
示例15: predict
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import mode [as 別名]
def predict(self, X):
"""
Predicts the output (y) of a given matrix X
Parameters
----------
X : numerical or ordinal matrix of values corresponding to some output
Returns
-------
The predict values corresponding to the inputs
"""
votes = np.zeros(shape=(self.num_trees, X.shape[0]))
for i, tree in enumerate(self.forest):
votes[i] = tree.predict(X)
predictions = np.zeros(shape=X.shape[0])
if isinstance(self, RegressionForest):
predictions = votes.mean(axis=0)
else:
# print(votes)
predictions = np.squeeze(mode(votes, axis=0)[0])
return predictions