本文整理匯總了Python中scipy.stats.lognorm方法的典型用法代碼示例。如果您正苦於以下問題:Python stats.lognorm方法的具體用法?Python stats.lognorm怎麽用?Python stats.lognorm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.stats
的用法示例。
在下文中一共展示了stats.lognorm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: setup_class
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def setup_class(cls):
cls.dist_equivalents = [
#transf, stats.lognorm(1))
#The below fails on the SPARC box with scipy 10.1
#(lognormalg, stats.lognorm(1)),
#transf2
(squarenormalg, stats.chi2(1)),
(absnormalg, stats.halfnorm),
(absnormalg, stats.foldnorm(1e-5)), #try frozen
#(negsquarenormalg, 1-stats.chi2), # won't work as distribution
(squaretg(10), stats.f(1, 10))
] #try both frozen
l,s = 0.0, 1.0
cls.ppfq = [0.1,0.5,0.9]
cls.xx = [0.95,1.0,1.1]
cls.nxx = [-0.95,-1.0,-1.1]
示例2: setUp_configure
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def setUp_configure(self):
from scipy import stats
self.dist = distributions.LogNormal
self.scipy_dist = stats.lognorm
self.test_targets = set([
'batch_shape', 'entropy', 'event_shape', 'log_prob', 'mean',
'sample', 'support', 'variance'])
mu = utils.force_array(
numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32))
sigma = utils.force_array(numpy.exp(numpy.random.uniform(
-1, 0, self.shape)).astype(numpy.float32))
self.params = {'mu': mu, 'sigma': sigma}
self.scipy_params = {'s': sigma, 'scale': numpy.exp(mu)}
self.support = 'positive'
示例3: test_lognorm_fit
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def test_lognorm_fit(self):
x = np.array([1.5, 3, 10, 15, 23, 59])
lnxm1 = np.log(x - 1)
shape, loc, scale = stats.lognorm.fit(x, floc=1)
assert_allclose(shape, lnxm1.std(), rtol=1e-12)
assert_equal(loc, 1)
assert_allclose(scale, np.exp(lnxm1.mean()), rtol=1e-12)
shape, loc, scale = stats.lognorm.fit(x, floc=1, fscale=6)
assert_allclose(shape, np.sqrt(((lnxm1 - np.log(6))**2).mean()),
rtol=1e-12)
assert_equal(loc, 1)
assert_equal(scale, 6)
shape, loc, scale = stats.lognorm.fit(x, floc=1, fix_s=0.75)
assert_equal(shape, 0.75)
assert_equal(loc, 1)
assert_allclose(scale, np.exp(lnxm1.mean()), rtol=1e-12)
示例4: test_stats_shapes_argcheck
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def test_stats_shapes_argcheck():
# stats method was failing for vector shapes if some of the values
# were outside of the allowed range, see gh-2678
mv3 = stats.invgamma.stats([0.0, 0.5, 1.0], 1, 0.5) # 0 is not a legal `a`
mv2 = stats.invgamma.stats([0.5, 1.0], 1, 0.5)
mv2_augmented = tuple(np.r_[np.nan, _] for _ in mv2)
assert_equal(mv2_augmented, mv3)
# -1 is not a legal shape parameter
mv3 = stats.lognorm.stats([2, 2.4, -1])
mv2 = stats.lognorm.stats([2, 2.4])
mv2_augmented = tuple(np.r_[_, np.nan] for _ in mv2)
assert_equal(mv2_augmented, mv3)
# FIXME: this is only a quick-and-dirty test of a quick-and-dirty bugfix.
# stats method with multiple shape parameters is not properly vectorized
# anyway, so some distributions may or may not fail.
# Test subclassing distributions w/ explicit shapes
示例5: d_score
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def d_score(self, Y):
E = Y["Event"][:, np.newaxis]
T = Y["Time"]
lT = np.log(T)
Z = (lT - self.loc) / self.scale
D_uncens = np.zeros((self.loc.shape[0], 2))
D_uncens[:, 0] = (self.loc - lT) / (self.scale ** 2)
D_uncens[:, 1] = 1 - ((self.loc - lT) ** 2) / (self.scale ** 2)
D_cens = np.zeros((self.loc.shape[0], 2))
D_cens[:, 0] = -sp.stats.norm.pdf(lT, loc=self.loc, scale=self.scale) / (
1 - self.dist.cdf(T) + self.eps
)
D_cens[:, 1] = (
-Z
* sp.stats.norm.pdf(lT, loc=self.loc, scale=self.scale)
/ (1 - self.dist.cdf(T) + self.eps)
)
return (1 - E) * D_cens + E * D_uncens
示例6: define_tau_function
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def define_tau_function(after_treatment_temperature_threshold):
"""
Defines tau-function of the extended Willans curve.
:param after_treatment_temperature_threshold:
Engine coolant temperature threshold when the after treatment system is
warm [°C].
:type after_treatment_temperature_threshold: (float, float)
:return:
Tau-function of the extended Willans curve.
:rtype: callable
"""
import scipy.stats as sci_sta
temp_mean, temp_end = np.array(after_treatment_temperature_threshold) + 273
s = np.log(temp_end / temp_mean) / sci_sta.norm.ppf(0.95)
f = sci_sta.lognorm(max(s, dfl.EPS), 0, temp_mean).cdf
def _tau_function(t0, t1, temp):
return t0 + (t1 - t0) * f(temp + 273)
return _tau_function
示例7: exactdist
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def exactdist(self, xzero, t):
expnt = np.exp(-self.lambd * t)
#TODO: check this is still wrong, just guessing
meant = np.log(xzero) * expnt + self._exactconst(expnt)
stdt = self._exactstd(expnt)
return stats.lognorm(loc=meant, scale=stdt)
示例8: test_equivalent
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def test_equivalent(self):
xx, ppfq = self.xx, self.ppfq
for d1,d2 in self.dist_equivalents:
## print d1.name
assert_almost_equal(d1.cdf(xx), d2.cdf(xx), err_msg='cdf'+d1.name)
assert_almost_equal(d1.pdf(xx), d2.pdf(xx),
err_msg='pdf '+d1.name+d2.name)
assert_almost_equal(d1.sf(xx), d2.sf(xx),
err_msg='sf '+d1.name+d2.name)
assert_almost_equal(d1.ppf(ppfq), d2.ppf(ppfq),
err_msg='ppq '+d1.name+d2.name)
assert_almost_equal(d1.isf(ppfq), d2.isf(ppfq),
err_msg='isf '+d1.name+d2.name)
self.d1 = d1
self.d2 = d2
## print d1, d2
## print d1.moment(3)
## print d2.moment(3)
#work around bug#1293
if hasattr(d2, 'dist'):
d2mom = d2.dist.moment(3, *d2.args)
else:
d2mom = d2.moment(3)
assert_almost_equal(d1.moment(3), d2mom,
DECIMAL,
err_msg='moment '+d1.name+d2.name)
# silence warnings in scipy, works for versions
# after print changed to warning in scipy
orig_filter = warnings.filters[:]
warnings.simplefilter('ignore')
try:
s1 = d1.stats(moments='mvsk')
s2 = d2.stats(moments='mvsk')
finally:
warnings.filters = orig_filter
#stats(moments='k') prints warning for lognormalg
assert_almost_equal(s1[:2], s2[:2],
err_msg='stats '+d1.name+d2.name)
assert_almost_equal(s1[2:], s2[2:],
decimal=2, #lognorm for kurtosis
err_msg='stats '+d1.name+d2.name)
示例9: test_pdf
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def test_pdf(self):
# Regression test for Ticket #1471: avoid nan with 0/0 situation
with np.errstate(divide='ignore'):
pdf = stats.lognorm.pdf([0, 0.5, 1], 1)
assert_array_almost_equal(pdf, [0.0, 0.62749608, 0.39894228])
示例10: test_fix_fit_2args_lognorm
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def test_fix_fit_2args_lognorm(self):
"""Regression test for #1551."""
np.random.seed(12345)
with np.errstate(all='ignore'):
x = stats.lognorm.rvs(0.25, 0., 20.0, size=20)
assert_allclose(np.array(stats.lognorm.fit(x, floc=0, fscale=20)),
[0.25888672, 0, 20], atol=1e-5)
示例11: test_regression_ticket_1293
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def test_regression_ticket_1293(self):
# Create a frozen distribution.
frozen = stats.lognorm(1)
# Call one of its methods that does not take any keyword arguments.
m1 = frozen.moment(2)
# Now call a method that takes a keyword argument.
frozen.stats(moments='mvsk')
# Call moment(2) again.
# After calling stats(), the following was raising an exception.
# So this test passes if the following does not raise an exception.
m2 = frozen.moment(2)
# The following should also be true, of course. But it is not
# the focus of this test.
assert_equal(m1, m2)
示例12: test_frozen_fit_ticket_1536
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def test_frozen_fit_ticket_1536():
np.random.seed(5678)
true = np.array([0.25, 0., 0.5])
x = stats.lognorm.rvs(true[0], true[1], true[2], size=100)
olderr = np.seterr(divide='ignore')
try:
params = np.array(stats.lognorm.fit(x, floc=0.))
finally:
np.seterr(**olderr)
assert_almost_equal(params, true, decimal=2)
params = np.array(stats.lognorm.fit(x, fscale=0.5, loc=0))
assert_almost_equal(params, true, decimal=2)
params = np.array(stats.lognorm.fit(x, f0=0.25, loc=0))
assert_almost_equal(params, true, decimal=2)
params = np.array(stats.lognorm.fit(x, f0=0.25, floc=0))
assert_almost_equal(params, true, decimal=2)
np.random.seed(5678)
loc = 1
floc = 0.9
x = stats.norm.rvs(loc, 2., size=100)
params = np.array(stats.norm.fit(x, floc=floc))
expected = np.array([floc, np.sqrt(((x-floc)**2).mean())])
assert_almost_equal(params, expected, decimal=4)
示例13: __init__
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def __init__(self,
γ=2,
β=0.95,
α=0.90,
σ=0.1,
grid_size=100):
self.γ, self.β, self.α, self.σ = γ, β, α, σ
# == Set the grid interval to contain most of the mass of the
# stationary distribution of the consumption endowment == #
ssd = self.σ / np.sqrt(1 - self.α**2)
grid_min, grid_max = np.exp(-4 * ssd), np.exp(4 * ssd)
self.grid = np.linspace(grid_min, grid_max, grid_size)
self.grid_size = grid_size
# == set up distribution for shocks == #
self.ϕ = lognorm(σ)
self.draws = self.ϕ.rvs(500)
# == h(y) = β * int G(y,z)^(1-γ) ϕ(dz) == #
self.h = np.empty(self.grid_size)
for i, y in enumerate(self.grid):
self.h[i] = β * np.mean((y**α * self.draws)**(1 - γ))
## == Now the functions that act on a Lucas Tree == #
示例14: test_pdf
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def test_pdf(self):
# Regression test for Ticket #1471: avoid nan with 0/0 situation
# Also make sure there are no warnings at x=0, cf gh-5202
with warnings.catch_warnings():
warnings.simplefilter('error', RuntimeWarning)
pdf = stats.lognorm.pdf([0, 0.5, 1], 1)
assert_array_almost_equal(pdf, [0.0, 0.62749608, 0.39894228])
示例15: test_logcdf
# 需要導入模塊: from scipy import stats [as 別名]
# 或者: from scipy.stats import lognorm [as 別名]
def test_logcdf(self):
# Regression test for gh-5940: sf et al would underflow too early
x2, mu, sigma = 201.68, 195, 0.149
assert_allclose(stats.lognorm.sf(x2-mu, s=sigma),
stats.norm.sf(np.log(x2-mu)/sigma))
assert_allclose(stats.lognorm.logsf(x2-mu, s=sigma),
stats.norm.logsf(np.log(x2-mu)/sigma))